Journal of Materials Science: Materials in Medicine

, Volume 20, Issue 9, pp 1803–1814 | Cite as

Synthesis and characterisation of enhanced barrier polyurethane for encapsulation of implantable medical devices

  • Nima Roohpour
  • Jaroslaw M. Wasikiewicz
  • Deepen Paul
  • Pankaj Vadgama
  • Ihtesham U. Rehman
Article

Abstract

Polymeric membranes have been used as interfaces between implantable devices and biological tissues to operate as a protective barrier from water exchanging and to enhance biocompatibility. Polyurethanes have been used as biocompatible membranes for decades. In this study, copolymers of polyether urethane (PEU) with polydimethylsiloxane (PDMS) were synthesised with the goal of creating materials with low water permeability and high elasticity. PDMS was incorporated into polymer backbone as a part of the soft segment during polyurethane synthesis and physical properties as well as water permeability of resulting copolymer were studied in regard to PDMS content. Increase in PDMS content led to increase of microphase separation of the copolymer and corresponding increase in elastic modulus. Surface energy of the polymer was decreased by incorporating PDMS compared to unmodified PEU. PDMS in copolymer formed a hydrophobic surface which caused reduction in water permeability and water uptake of the membranes. Thus, PDMS containing polyurethane with its potent water resistant properties demonstrated a great promise for use as an implantable encapsulation material.

Notes

Acknowledgement

We acknowledge generous support from European Union (Grant no IST-2002-1-001837–Healthy Aims).

References

  1. 1.
    Receveur RAM, Lindemans FW, de Rooij NF. Microsystem technologies for implantable applications. J Micromech Microeng. 2007;17:R50–80. doi:10.1088/0960-1317/17/5/R02.CrossRefGoogle Scholar
  2. 2.
    Hodgins D, Bertsch A, Post N, Frischholz M, Volckaerts B, Spensley J, et al. Healthy aims: developing new medical implants and diagnostic equipment. IEEE Pervasive Comput. 2008;7:14–21. doi:10.1109/MPRV.2008.8.CrossRefGoogle Scholar
  3. 3.
    Dario P, Carrozza MC, Benvenuto A, Menciassi A. Micro systems in biomedical applications? J Micromech Microeng. 2000;10:235–44. doi:10.1088/0960-1317/10/2/322.CrossRefGoogle Scholar
  4. 4.
    Donaldson PEK. Encapsulating microelectronic implants in one-part silicone rubbers. Med Biol Eng Comput. 1989;27:93–4. doi:10.1007/BF02442177.PubMedCrossRefGoogle Scholar
  5. 5.
    Hodgins D, Wasikiewicz JM, Grahn MF, Paul D, Roohpour N, Vadgama P, et al. Biocompatible materials developments for new medical implants. Med Device Technol. 2007;18:30–5.PubMedGoogle Scholar
  6. 6.
    Thil MA, Gerard B, Jarvis JC, Delbeke J. Two-way communication for programming and measurement in a miniature implantable stimulator. Med Biol Eng Comput. 2005;43:528–34. doi:10.1007/BF02344736.PubMedCrossRefGoogle Scholar
  7. 7.
    Stieglitz T. Implantable microsystems for monitoring and neural rehabilitation, part I. Med Device Technol. 2001;12:2.Google Scholar
  8. 8.
    Rodger DC, Tai YC. Microelectronic packaging for retinal prostheses. IEEE Eng Med Biol Mag. 2005;24:52. doi:10.1109/MEMB.2005.1511500.PubMedCrossRefGoogle Scholar
  9. 9.
    Wasikiewicz JM, Roohpour N, Paul D, Grahn M, Ateh D, Rehman I, et al. Polymeric barrier membranes for device packaging, diffusive control and biocompatibility. Appl Surf Sci. 2008;255:340–3. doi:10.1016/j.apsusc.2008.06.159.CrossRefADSGoogle Scholar
  10. 10.
    Santerre JP, Woodhouse K, Laroche G, Labow RS. Understanding the biodegradation of polyurethanes: from classical implants to tissue engineering materials. Biomaterials. 2005;26:7457–70. doi:10.1016/j.biomaterials.2005.05.079.PubMedCrossRefGoogle Scholar
  11. 11.
    Stokes K, McVenes R, Anderson JM. Polyurethane elastomer biostability. J Biomater Appl. 1995;9:321–54.PubMedGoogle Scholar
  12. 12.
    Lamba NMK, Woodhouse KA, Cooper S. Polyurethane in biomedical application. London, UK: CRC; 1997.Google Scholar
  13. 13.
    McGee M, Szycher M, Turner SA, et al. Use of a composite biomer/butyl rubber/Biomer material to prevent transdiaphragmatic ater permeation during long term electrically actuated left vantricular device (LVAD) pumping. Trans Am Soc Artif Intern Organs. 1980;26:299.PubMedGoogle Scholar
  14. 14.
    Galland G, Lam TM. Permeability and diffusion of gases in segmented polyurethanes: structure-properties relations. J Appl Polym Sci. 1993;50:1041–58. doi:10.1002/app.1993.070500613.CrossRefGoogle Scholar
  15. 15.
    William LEM, Hunke A Jr. Mass transport properties of co(polyether)polyurethane membranes II: permeability and sorption characteristics. J Pharm Sci. 1981;70:1313–8.CrossRefGoogle Scholar
  16. 16.
    Yang MJ, Zhang Z, Hahn C, Laroche G, King MW, Guidoin R. Totally implantable artificial hearts and left ventricular assist devices: selecting impermeable polycarbonate urethane to manufacture ventricles. J Biomed Mater Res. 1999;48:13–23. doi:10.1002/(SICI)1097-4636(1999)48:1<13::AID-JBM4>3.0.CO;2-4.PubMedCrossRefGoogle Scholar
  17. 17.
    Park HB, Kim CK, Lee YM. Gas separation properties of polysiloxane/polyether mixed soft segmented urethane urea membranes. J Membr Sci. 2002;204:257–69. doi:10.1016/S0376-7388(02)00048-0.CrossRefGoogle Scholar
  18. 18.
    Gomes D, Peinemann KV, Nunes SP, Kujawski W, Kozakiewicz J. Gas transport properties of segmented poly(ether siloxane urethane urea) membranes. J Membr Sci. 2006;281:747–53. doi:10.1016/j.memsci.2006.05.002.CrossRefGoogle Scholar
  19. 19.
    Yilgor I, Yilgor E. Hydrophilic polyurethaneurea membranes: influence of chemical composition on the water vapor permeation rates. Polymer (Guildf). 1999;40:5575–81. doi:10.1016/S0032-3861(98)00766-6.CrossRefGoogle Scholar
  20. 20.
    Xu RJ, Manias E, Snyder AJ, Runt J. Low permeability biomedical polyurethane nanocomposites. J Biomed Mater Res A. 2003;64A:114–9. doi:10.1002/jbm.a.10377.CrossRefGoogle Scholar
  21. 21.
    Martin DJ, Poole Warren LA, Gunatillake PA, McCarthy SJ, Meijs GF, Schindhelm K. Polydimethylsiloxane/polyether-mixed macrodiol-based polyurethane elastomers: biostability. Biomaterials. 2000;21:1021–9. doi:10.1016/S0142-9612(99)00271-9.PubMedCrossRefGoogle Scholar
  22. 22.
    Mathur AB, Collier TO, Kao WJ, Wiggins M, Schubert MA, Hiltner A, et al. In vivo biocompatibility and biostability of modified polyurethanes. J Biomed Mater Res. 1997;36:246–57. doi:10.1002/(SICI)1097-4636(199708)36:2<246::AID-JBM14>3.0.CO;2-E.PubMedCrossRefGoogle Scholar
  23. 23.
    Bernacca GM, O’Connor B, Williams DF, Wheatley DJ. Hydrodynamic function of polyurethane prosthetic heart valves. Biomaterials. 2002;23:45–50. doi:10.1016/S0142-9612(01)00077-1.PubMedCrossRefGoogle Scholar
  24. 24.
    Wang LF, Ji Q, Glass TE, Ward TC, McGrath JE, Muggli M, et al. Synthesis and characterization of organosiloxane modified segmented polyether polyurethanes. Polymer (Guildf). 2000;41:5083–93. doi:10.1016/S0032-3861(99)00570-4.CrossRefGoogle Scholar
  25. 25.
    Lin Y-H, Chou N-K, Chen K-F, Ho G-H, Chang C-H, Wang S-S, et al. Effect of soft segment length on properties of hydrophilic/hydrophobic polyurethanes. Polym Int. 2007;56:1415–22. doi:10.1002/pi.2291.CrossRefGoogle Scholar
  26. 26.
    Ioan S, Grigorescu G, Stanciu A. Effect of segmented poly(ester-siloxane)urethanes compositional parameters on differential scanning calorimetry and dynamic-mechanical measurements. Eur Polym J. 2002;38:2295–303. doi:10.1016/S0014-3057(02)00108-8.CrossRefGoogle Scholar
  27. 27.
    Adhikari R, Gunatillake PA, McCarthy SJ, Meijs GF. Mixed macrodiol-based siloxane polyurethanes: effect of the comacrodiol structure on properties and morphology. J Appl Polym Sci. 2000;78:1071–82.CrossRefGoogle Scholar
  28. 28.
    Fan Q, Fang J, Chen Q, Yu X. Synthesis and properties of polyurethane modified with aminoethylaminopropyl poly(dimethyl siloxane). J Appl Polym Sci. 1999;74:2552–8.CrossRefGoogle Scholar
  29. 29.
    Dou QZ, Wang CC, Cheng C, Han W, Thune PC, Ming WH. PDMS-modified polyurethane films with low water contact angle hysteresis. Macromol Chem Phys. 2006;207:2170–9. doi:10.1002/macp.200600375.CrossRefGoogle Scholar
  30. 30.
    Queiroz DP, Botelho do Rego AM, de Pinho MN. Bi-soft segment polyurethane membranes: surface studies by X-ray photoelectron spectroscopy. J Membr Sci. 2006;281:239–44. doi:10.1016/j.memsci.2006.03.037.CrossRefGoogle Scholar
  31. 31.
    Zhu Q, Feng S, Zhang C. Synthesis and thermal properties of polyurethane-polysiloxane crosslinked polymer networks. J Appl Polym Sci. 2003;90:310–5.CrossRefGoogle Scholar
  32. 32.
    Wen J, Somorjai G, Lim F, Ward R. XPS study of surface composition of a segmented polyurethane block copolymer modified by PDMS end groups and its blends with phenoxy. Macromolecules. 1997;30:7206–13.CrossRefADSGoogle Scholar
  33. 33.
    Liao SK, Jang SC, Lin MF. Phase behavior and mechanical properties of siloxane-urethane copolymer. J Polym Res. 2005;12:103–12. doi:10.1007/s10965-004-2501-7.CrossRefGoogle Scholar
  34. 34.
    Meincken M, Berhane TA, Mallon PE. Tracking the hydrophobicity recovery of PDMS compounds using the adhesive force determined by AFM force distance measurements. Polymer (Guildf). 2005;46:203–8. doi:10.1016/j.polymer.2004.11.012.CrossRefGoogle Scholar
  35. 35.
    Stetzler RS, Smullin CF. Determination of hydroxyl number of polyoxyalkylene ethers by acid-catalyzed acetylation. Anal Chem. 1962;34:194–5. doi:10.1021/ac60182a008.CrossRefGoogle Scholar
  36. 36.
    Rochery M, Vroman I, TM Lam. Incorporation of poly(dimethylsiloxane) into poly(tetramethylene oxide) based polyurethanes: the effect of synthesis conditions on polymer properties. J Macromol Sci Part A Pure Appl Chem. 2003;A40:321–33. doi:10.1081/MA-120018117.Google Scholar
  37. 37.
    Theisen A, Johann C, Deacon MP, Harding SE. Refractive increment data-book for polymer and biomolecular scientists. Nottingham, UK: Nottingham University Press; 2000.Google Scholar
  38. 38.
    Kwok DY, Neumann AW. Contact angle measurements and contact angle interpretation. Adv Colloid Interface Sci. 1999;81:167–249. doi:10.1016/S0001-8686(98)00087-6.CrossRefGoogle Scholar
  39. 39.
    Bai CY, Zhang XY, Dai JB, Zhang CY. Water resistance of the membranes for uv curable waterborne polyurethane dispersions. Prog Org Coat. 2007;59:331–6. doi:10.1016/j.porgcoat.2007.05.003.CrossRefGoogle Scholar
  40. 40.
    Parnell S, Min K, Cakmak M. Kinetic studies of polyurethane polymerization with Raman spectroscopy. Polymer (Guildf). 2003;44:5137–44. doi:10.1016/S0032-3861(03)00468-3.CrossRefGoogle Scholar
  41. 41.
    Madhavan K, Reddy BSR. Synthesis and characterization of poly(dimethylsiloxane-urethane) elastomers: effect of hard segments of polyurethane on morphological and mechanical properties. J Polym Sci Part A. 2006;44:2980–9.CrossRefGoogle Scholar
  42. 42.
    Stanciu A, Airinei A, Timpu D, Ioanid A, Ioan C, Bulacovschi V. Polyurethane/polydimethylsiloxane segmented copolymers source. Eur Polym J. 1999;35:1959–65. doi:10.1016/S0014-3057(98)00294-8.CrossRefGoogle Scholar
  43. 43.
    Rehman IU. Biodegradable polyurethanes; biodegradable low adherence films for the prevention of adhesions after surgery. J Biomater Appl. 1996;11:182–257.PubMedGoogle Scholar
  44. 44.
    Rochery M, Vroman I, Campagne C. Poly(tetramethylene oxide)-based polyurethane coating of polyester with poly(dimethylsiloxane)- and poly(tetramethylene oxide)-based polyurethane. J Industrial Textiles. 2006;35:227–38. doi:10.1177/1528083706055755.CrossRefGoogle Scholar
  45. 45.
    Queiroz DP, Norberta de Pinho M. Structural characteristics, gas permeation properties of polydimethylsiloxane/poly(propylene oxide) urethane/urea bi-soft segment membranes. Polymer (Guildf). 2005;46:2346–53. doi:10.1016/j.polymer.2004.12.056.CrossRefGoogle Scholar
  46. 46.
    Miller JA, Lin SB, Wang KK, Wu KS, Gibsson PE, Cooper SL. Properties of polyether-polyurethane block copolymers: effects of hard segment length distribution. Macromolecules. 1985;18:32–44. doi:10.1021/ma00143a005.CrossRefADSGoogle Scholar
  47. 47.
    Ning L, De-Ning W, Sheng-kang Y. Hydrogen-bonding properties of segmented polyether poly(urethane urea) copolymer. Macromolecules. 1997;30:4405–9.CrossRefADSGoogle Scholar
  48. 48.
    Mattia J, Painter P. A comparison of hydrogen bonding and order in a polyurethane and poly(urethane-urea) and their blends with poly(ethylene glycol). Macromolecules. 2007;40:1546–54. doi:10.1021/ma0626362.CrossRefADSGoogle Scholar
  49. 49.
    Janik H, Palys B, Petrovic ZS. Multiphase-separated polyurethanes studied by micro-Raman spectroscopy. Macromol Rapid Commun. 2003;24:265–8. doi:10.1002/marc.200390039.CrossRefGoogle Scholar
  50. 50.
    Kim H, Urban MW. Molecular level chain scission mechanisms of epoxy and urethane polymeric films exposed to UV/H2O. Multidimensional spectroscopic studies. Langmuir. 2000;16:5382–90. doi:10.1021/la990619i.CrossRefGoogle Scholar
  51. 51.
    Goheen SC, Saunders RM, Harvey SD, Olsen PC. Raman spectroscopy of 2-hydroxyethyl methacrylate-acrylamide copolymer using gamma irradiation for cross-linking. J Raman Spectrosc. 2006;37:1248–56. doi:10.1002/jrs.1543.CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Nima Roohpour
    • 1
  • Jaroslaw M. Wasikiewicz
    • 1
  • Deepen Paul
    • 1
  • Pankaj Vadgama
    • 1
  • Ihtesham U. Rehman
    • 1
  1. 1.Interdisciplinary Research Centre in Biomedical Materials, School of Engineering and Material SciencesQueen Mary University of LondonLondonUK

Personalised recommendations