The effect of phosphate content on the bioactivity of soda-lime-phosphosilicate glasses

  • M. D. O’Donnell
  • S. J. Watts
  • R. G. Hill
  • R. V. Law
Article

Abstract

We report on the bioactivity of two series of glasses in the SiO2–Na2O–CaO–P2O5 system after immersion in simulated body fluid (SBF) after 21 days. The effect of P2O5 content was examined for compositions containing 0–9.25 mol.% phosphate. Both series of glasses degraded to basic pH, but the solutions tended towards to neutrality with increasing phosphate content; a result of the acidic phosphate buffering the effect of the alkali metal and alkaline earth ions on degradation. Bioactivity was assessed by the appearance of features in the X-ray diffraction (XRD) traces and Fourier transform infrared (FTIR) spectra consistent with crystalline hydroxyl-carbonate-apatite (HCAp): such as the appearance of the (002) Bragg reflection in XRD and splitting of the P–O stretching vibration around 550 cm−1 in the FTIR respectively. All glasses formed HCAp in SBF over the time periods studied and the time for formation of this crystalline phase occurred more rapidly in both series as the phosphate contents were increased. For P2O5 content >3 mol.% both series exhibited highly crystalline apatite by 16 h immersion in SBF. This indicates that in the compositions studied, phosphate content is more important for bioactivity than network connectivity (NC) of the silicate phase and compositions showing rapid apatite formation are presented, superior to 45S5 Bioglass® which was tested under identical conditions for comparison.

References

  1. 1.
    Hench LL, Splinter RJ, Allen WC, Greenlee TK. Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res. 1971;5:117–41. doi:10.1002/jbm.820050611.CrossRefGoogle Scholar
  2. 2.
    Litkowski LJ, Hack GD, Greenspan DC. Compositions containing bioactive glass and their use in treating tooth hypersensitivity. US Patent 6338751; 2002.Google Scholar
  3. 3.
    Barry JE, Trogolo JA. Antibiotic toothpaste. US Patent 6123925; 2000.Google Scholar
  4. 4.
    Cannell DW, Hashimoto S, Barger KN, Nguyen NV. Hair relaxer compositions comprising a bioactive glass. European Patent EP1709997; 2006.Google Scholar
  5. 5.
    O’Donnell MD, Watts SJ, Law RV, Hill RG. Effect of P2O5 content in two series of soda lime phosphosilicate glasses on structure and properties—part I: NMR. J Non-Cryst Solids. 2008;354:3554–60. doi:10.1016/j.jnoncrysol.2008.03.034.CrossRefADSGoogle Scholar
  6. 6.
    O’Donnell MD, Watts SJ, Law RV, Hill RG. Effect of P2O5 content in two series of soda lime phosphosilicate glasses on structure and properties—part II: physical properties. J Non-Cryst Solids. 2008;354:3561–6. doi:10.1016/j.jnoncrysol.2008.03.035.CrossRefADSGoogle Scholar
  7. 7.
    Elgayar I, Aliev AE, Boccaccini AR, Hill RG. Structural analysis of bioactive glasses. J Non-Cryst Solids. 2005;351:173–83. doi:10.1016/j.jnoncrysol.2004.07.067.CrossRefADSGoogle Scholar
  8. 8.
    Krajewski A, Ravaglioli A. Bioceramics and biological glasses. In: Barbucci R, editor. Integrated biomaterials science. New York: Kluwer Academic/Plenum; 2002. p. 189–254.CrossRefGoogle Scholar
  9. 9.
    Knowles JC. Phosphate based glasses for biomedical applications. J Mater Chem. 2003;10:2395–401. doi:10.1039/b307119g.CrossRefGoogle Scholar
  10. 10.
    Grussaute H, Montagne L, Palavit G, Bernard JL. Phosphate speciation in Na2O-CaO-P2O5-SiO2 and Na2O-TiO2-P2O5-SiO2 glasses. J Non-Cryst Solids. 2000;263:312–7. doi:10.1016/S0022-3093(99)00643-2.CrossRefADSGoogle Scholar
  11. 11.
    Gorustovich A, Steimetz T, Cabrini RL, Porto López JM. Osteoconductivity of strontium-doped bioactive glass particles. Bone. 2007;41:S1–13.Google Scholar
  12. 12.
    Gorustovich A, Steimetz T, Porto López JM. Microchemical characterization of bone around strontium-doped bioactive glass particles. Bone. 2007;41:S1–13.Google Scholar
  13. 13.
    Fredholm Y, O’Donnell MD, Kapukhina N, Law RV, Hill RG. Strontium containing bioactive glasses: part 1 glass structure and physical properties. J Non-Cryst Solids (under review).Google Scholar
  14. 14.
    Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27:2907–15. doi:10.1016/j.biomaterials.2006.01.017.PubMedCrossRefGoogle Scholar
  15. 15.
    Fleet ME, Liu X, King PL. Accommodation of the carbonate ion in apatite: an FTIR and X-ray structure study of crystals synthesized at 2-4 GPa. Am Mineral. 2004;89:1422–32.Google Scholar
  16. 16.
    Vallet-Regí M, Romero AM, Ragel CV, LeGeros RZ. XRD, SEM-EDS, and FTIR studies of in vitro growth of an apatite-like layer on sol-gel glasses. J Biomed Mater Res A. 1999;44:416–21. doi:10.1002/(SICI)1097-4636(19990315)44:4<416::AID-JBM7>3.0.CO;2-S.CrossRefGoogle Scholar
  17. 17.
    Cullity BD. Elements of X-ray diffraction. Reading, MA: Addison-Wesley; 1956.Google Scholar
  18. 18.
    Regina M, Filgueiras T, La Torre G, Hench LL. Solution effects on the surface reactions of three bioactive glass compositions. J Biomed Mater Res. 1993;27:1485–93. doi:10.1002/jbm.820271204.CrossRefGoogle Scholar
  19. 19.
    Peitl O, Dutra Zanotto E, Hench LL. Highly bioactive P2O5-Na2O-CaO-SiO2 glass-ceramics. J Non-Cryst Solids. 2001;292:115–26. doi:10.1016/S0022-3093(01)00822-5.CrossRefADSGoogle Scholar
  20. 20.
    Filho OP, La Torre GP, Hench LL. Effect of crystallization on apatite-layer formation of bioactive glass 45S5. J Biomed Mater Res A. 1996;30:509–14. doi:10.1002/(SICI)1097-4636(199604)30:4<509::AID-JBM9>3.0.CO;2-T.CrossRefGoogle Scholar
  21. 21.
    Sanders DM, Person WB, Hench LL. Quantitative analysis of glass structure with the use of infrared reflection spectra. Appl Spectrosc. 1974;28:247–55. doi:10.1366/000370274774332623.CrossRefADSGoogle Scholar
  22. 22.
    Serra J, González P, Liste S, Serra C, Chiussi S, León B, et al. FTIR and XPS studies of bioactive silica based glasses. J Non-Cryst Solids. 2003;332:20–7. doi:10.1016/j.jnoncrysol.2003.09.013.CrossRefADSGoogle Scholar
  23. 23.
    Penel G, Leroy G, Rey C, Sombret B, Huvenne JP, Bres E. Infrared and Raman microspectrometry study of fluor-fluor-hydroxy and hydroxy-apatite powders. J Mater Sci Mater Med. 1997;8:271–6. doi:10.1023/A:1018504126866.PubMedCrossRefGoogle Scholar
  24. 24.
    Santos RV, Clayton RN. The carbonate content in high-temperature apatite; an analytical method applied to apatite from the Jacupiranga alkaline complex. Am Mineral. 1995;80:336–44.Google Scholar
  25. 25.
    Rey C, Collins B, Goehl T, Dickson I, Glimcher M. The carbonate environment in bone mineral: a resolution-enhanced fourier transform infrared spectroscopy study. Calcif Tissue Int. 1989;45:157–64. doi:10.1007/BF02556059.PubMedCrossRefGoogle Scholar
  26. 26.
    Galeener FL, Lucovsky G. Longitudinal optical vibrations in glasses: GeO2 and SiO2. Phys Rev Lett. 1976;37:1474. doi:10.1103/PhysRevLett.37.1474.CrossRefADSGoogle Scholar
  27. 27.
    Lange P. Evidence for disorder-induced vibrational mode coupling in thin amorphous SiO2 films. J Appl Phys. 1989;66:201–4. doi:10.1063/1.344472.CrossRefADSGoogle Scholar
  28. 28.
    Vallet-Regi M, Arcos D. Biomimetic nanoceramics for clinical use. Cambridge: RSC Publishing; 2008.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • M. D. O’Donnell
    • 1
    • 2
    • 3
  • S. J. Watts
    • 1
  • R. G. Hill
    • 1
  • R. V. Law
    • 2
  1. 1.Department of MaterialsImperial College LondonLondonUK
  2. 2.Department of ChemistryImperial College LondonLondonUK
  3. 3.BioCeramic Therapeutics Ltd.LondonUK

Personalised recommendations