Advertisement

Effect of direct RGD incorporation in PLLA nanofibers on growth and osteogenic differentiation of human mesenchymal stem cells

  • Markus Dietmar Schofer
  • Ulrich Boudriot
  • Sarah Bockelmann
  • Andreas Walz
  • Joachim Heinz Wendorff
  • Andreas Greiner
  • Jürgen Rudolf Josef Paletta
  • Susanne Fuchs-Winkelmann
Article

Abstract

The aim of this study was to functionalize synthetic poly-(l-lactic) (PLLA) nanofibers by direct incorporation of cRGD, in order to promote adhesion, growth and osteogenic differentiation of human mesenchymal stem cells (hMSC) in vitro. The cRGD was incorporated into PLLA nanofibers either by emulsion [PLLA-cRGD (d)] or suspension [PLLA-cRGD (s)]. Matrices were seeded with hMSC and cultivated over a period of 28 days under growth conditions and analyzed during the course. Although the mode of incorporation resulted in different distributions of the RGD peptide, it had no impact on the fiber characteristics when compared to corresponding unblended PLLA control fibers. However, hMSC showed better adherence on PLLA-cRGD (d). Nevertheless, this advantage was not reflected during the course of cultivation. Furthermore, the PLLA-cRGD (s) fibers mediated the osteogenic potential of collagen (determined as the expression and deposition of collagen and osteocalcin) to some extent. Further studies are needed in order to optimize the RGD distribution and concentration.

Keywords

Contact Angle PLLA Osteogenic Differentiation Human Mesenchymal Stem Cell Osteogenic Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (German Research Foundation, Grant No. BO 3065/1-1). We would like to thank M. Hellwig for SEM measurements.

References

  1. 1.
    Ramakrishna S, Fujihara K, Teo WE, Lim TC, Ma ZW. An introduction to electrospinning and nanofibers. Singapore: World Scientific Publishing; 2005.Google Scholar
  2. 2.
    Greiner A, Wendorff JH. Electrospinning: A fascinating method for the preparation of ultrathin fibres. Angew Chem Int Edit. 2007;46(30):5670–703.CrossRefGoogle Scholar
  3. 3.
    Ashammakhi N, Ndreu A, Yang Y, Ylikauppila H, Nikkola L. Nanofiber-based scaffolds for tissue engineering. Eur J Plastic Surg. 2008:online first.Google Scholar
  4. 4.
    Li WJ, Laurencin CT, Caterson EJ, Tuan RS, Ko FK. Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res. 2002;60(4):613–21.PubMedCrossRefGoogle Scholar
  5. 5.
    Liao S, Li B, Ma Z, Wei H, Chan C, Ramakrishna S. Biomimetic electrospun nanofibers for tissue regeneration. J Biomed Mater. 2006;1(3):R45–53.CrossRefADSGoogle Scholar
  6. 6.
    Hosseinkhani H, Hosseinkhani M, Tian F, Kobayashi H, Tabata Y. Osteogenic differentiation of mesenchymal stem cells in self-assembled peptide-amphiphile nanofibers. Biomaterials. 2006;27(22):4079–86.PubMedCrossRefGoogle Scholar
  7. 7.
    Xin X, Hussain M, Mao JJ. Continuing differentiation of human mesenchymal stem cells and induced chondrogenic and osteogenic lineages in electrospun PLGA nanofiber scaffold. Biomaterials. 2007;28(2):316–25.PubMedCrossRefGoogle Scholar
  8. 8.
    Shih YR, Chen CN, Tsai SW, Wang YJ, Lee OK. Growth of mesenchymal stem cells on electrospun type I collagen nanofibers. Stem Cells. 2006;24(11):2391–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Takahashi Y, Yamamoto M, Tabata Y. Osteogenic differentiation of mesenchymal stem cells in biodegradable sponges composed of gelatin and [beta]-tricalcium phosphate. Biomaterials. 2005;26(17):3587–96.PubMedCrossRefGoogle Scholar
  10. 10.
    Li WJ, Cooper JA Jr, Mauck RL, Tuan RS. Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications. Acta Biomater. 2006;2(4):377–85.PubMedCrossRefGoogle Scholar
  11. 11.
    Yoshimoto H, Shin YM, Terai H, Vacanti JP. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials. 2003;24(12):2077–82.PubMedCrossRefGoogle Scholar
  12. 12.
    Tuzlakoglu K, Bolgen N, Salgado AJ, Gomes ME, Piskin E, Reis RL. Nano- and micro-fiber combined scaffolds: a new architecture for bone tissue engineering. J Mater Sci Mater Med. 2005;16(12):1099–104.PubMedCrossRefGoogle Scholar
  13. 13.
    Boudriot U, Goetz B, Dersch R, Greiner A, Wendorff HJ. Role of electrospun nanofibers in stem cell technologies and tissue engineering. Macromol Symp. 2005;225(1):9–16.Google Scholar
  14. 14.
    Schofer MD, Boudriot U, Wack C, Leifeld I, Gräbedünkel C, Dersch R, et al. Influence of nanofibers on the growth and osteogenic differentiation of stem cells—A comparison of biological collagen nanofibers and synthetic PLLA fibers. J Mater Sci: Mater Med. 2009;20:767–74.Google Scholar
  15. 15.
    Meijer GJ, de Bruijn JD, Koole R, van Blitterswijk CA. Cell-based bone tissue engineering. PLoS Medicine/Public Library of Science. 2007;4(2):e9.Google Scholar
  16. 16.
    Salasznyk RM, Williams WA, Boskey A, Batorsky A, Plopper GE. Adhesion to vitronectin and collagen I promotes osteogenic differentiation of human mesenchymal stem cells. J Biomed Biotechnol. 2004;Apr(1):24–34.Google Scholar
  17. 17.
    Mizuno M, Kuboki Y. Osteoblast-related gene expression of bone marrow cells during the osteoblastic differentiation induced by type I collagen. J Biochem. 2001;129(1):133–8.PubMedGoogle Scholar
  18. 18.
    Hu J, Liu X, Ma PX. Induction of osteoblast differentiation phenotype on poly(l-lactic acid) nanofibrous matrix. Biomaterials. 2008;29(28):3815–21.PubMedCrossRefGoogle Scholar
  19. 19.
    Kim H-W, Yu H-S, Lee H-H. Nanofibrous matrices of poly(lactic acid) and gelatin polymeric blends for the improvement of cellular responses. J Biomed Mater Res A. 2008;87A(1):25–32.CrossRefGoogle Scholar
  20. 20.
    Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell. 2002;110(6):673–87.PubMedCrossRefGoogle Scholar
  21. 21.
    Hersel U, Dahmen C, Kessler H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials. 2003;24(24):4385–415.PubMedCrossRefGoogle Scholar
  22. 22.
    Dee KC, Rueger DC, Andersen TT, Bizios R. Conditions which promote mineralization at the bone-implant interface: a model in vitro study. Biomaterials. 1996;17(2):209–15.PubMedCrossRefGoogle Scholar
  23. 23.
    Healy KE, Rezania A, Stile RA. Designing biomaterials to direct biological responses. Ann N Y Acad Sci. 1999;875:24–35.PubMedCrossRefADSGoogle Scholar
  24. 24.
    Kantlehner M, Schaffner P, Finsinger D, Meyer J, Jonczyk A, Diefenbach B, et al. Surface coating with cyclic RGD peptides stimulates osteoblast adhesion and proliferation as well as bone formation. Chembiochem. 2000;1(2):107–14.PubMedCrossRefGoogle Scholar
  25. 25.
    Grafahrend D, Calvet JL, Klinkhammer K, Salber J, Dalton PD, Moller M, et al. Control of protein adsorption on functionalized electrospun fibers. Biotechnol Bioeng. 2008;101(3):609–21.PubMedCrossRefGoogle Scholar
  26. 26.
    Grafahrend D, Lleixa Calvet J, Salber J, Dalton PD, Moeller M, Klee D. Biofunctionalized poly(ethylene glycol)-block-poly(epsilon-caprolactone) nanofibers for tissue engineering. J Mater Sci Mater Med. 2008;19(4):1479–84.PubMedCrossRefGoogle Scholar
  27. 27.
    Kim TG, Park TG. Biomimicking extracellular matrix: cell adhesive RGD peptide modified electrospun poly(d, l-lactic-co-glycolic acid) nanofiber mesh. Tissue Eng. 2006;12(2):221–33.PubMedCrossRefGoogle Scholar
  28. 28.
    Zeng J, Hou H, Schaper A, Wendorff JH, Greiner A. Poly-l-lactide nanofibers by electrospinning -Influence of solution viscosity and electrical conductivity on fiber diameter and fiber morphology. e-polymers 2003;No 9:1–9.Google Scholar
  29. 29.
    Maretschek S, Greiner A, Kissel T. Electrospun biodegradable nanofiber nonwovens for controlled release of proteins. J Control Release. 2008;127(2):180–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Kim K, Luu YK, Chang C, Fang D, Hsiao BS, Chu B, et al. Incorporation and controlled release of a hydrophilic antibiotic using poly(lactide-co-glycolide)-based electrospun nanofibrous scaffolds. J Control Release. 2004;98(1):47–56.PubMedCrossRefGoogle Scholar
  31. 31.
    Boudriot U, Dersch R, Goetz B, Griss P, Greiner A, Wendorff JH. Elektrogesponnene Poly-l-Laktid-Nanofasern als resorbierbare Matrix fur Tissue-Engineering. Biomed Tech. 2004;49(9):242–7.CrossRefGoogle Scholar
  32. 32.
    Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7.PubMedCrossRefADSGoogle Scholar
  33. 33.
    Brendel C, Kuklick L, Hartmann O, Kim TD, Boudriot U, Schwell D, et al. Distinct gene expression profile of human mesenchymal stem cells in comparison to skin fibroblasts employing cDNA microarray analysis of 9600 genes. Gene Expr. 2005;12(4–6):245–57.PubMedCrossRefGoogle Scholar
  34. 34.
    Frank O, Heim M, Jakob M, Barbero A, Schafer D, Bendik I, et al. Real-time quantitative RT-PCR analysis of human bone marrow stromal cells during osteogenic differentiation in vitro. J Cell Biochem. 2002;85(4):737–46.PubMedCrossRefGoogle Scholar
  35. 35.
    Martin I, Jakob M, Schafer D, Dick W, Spagnoli G, Heberer M. Quantitative analysis of gene expression in human articular cartilage from normal and osteoarthritic joints. Osteoarthritis Cartilage. 2001;9(2):112–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Boudriot U, Dersch R, Greiner A, Wendorff JH. Electrospinning approaches toward scaffold engineering–a brief overview. Artif Organs. 2006;30(10):785–92.PubMedCrossRefGoogle Scholar
  37. 37.
    Casper CL, Stephens JS, Tassi NG, Chase DB, Rabolt JF. Controlling surface morphology of electrospun polystyrene fibers: effect of humidity and molecular weight in the electrospinning process. Macromolecules. 2004;37(2):573–8.CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Markus Dietmar Schofer
    • 1
  • Ulrich Boudriot
    • 3
  • Sarah Bockelmann
    • 1
  • Andreas Walz
    • 2
  • Joachim Heinz Wendorff
    • 2
  • Andreas Greiner
    • 2
  • Jürgen Rudolf Josef Paletta
    • 1
  • Susanne Fuchs-Winkelmann
    • 1
  1. 1.Department of OrthopedicsUniversity of MarburgMarburgGermany
  2. 2.Department of ChemistryUniversity of MarburgMarburgGermany
  3. 3.Department of OrthopedicsSankt-Elisabeth-Hospital GüterslohGüterslohGermany

Personalised recommendations