Aspects of the in vitro bioactivity and antimicrobial properties of Ag+- and Zn2+-exchanged 11 Å tobermorites

Article

Abstract

11 Å tobermorite, Ca5Si6O16(OH)2 · 4H2O, is a layer lattice ion exchange mineral whose potential as a carrier for Ag+ and Zn2+ ions in antimicrobial, bioactive formulations has not yet been explored. In view of this, the in vitro bioactivity of Ag+- and Zn2+-exchanged 11 Å tobermorites and their bactericidal action against S. aureus and P.aeruginosa are reported. The in vitro bioactivity of the synthetic unsubstituted tobermorite phase was confirmed by the formation of bone-like hydroxycarbonate apatite (HCA) on its surface within 48 h of contact with simulated body fluid. The substitution of labile Ag+ ions into the tobermorite lattice delayed the onset of HCA-formation to 72 h; whereas, the Zn2+-substituted phase failed to elicit an HCA-layer within 14 days. Both Ag+- and Zn2+-exchanged tobermorite phases were found to exhibit marked antimicrobial action against S. aureus and P.aeruginosa, two common pathogens in biomaterial-centred infections.

References

  1. 1.
    S.A. Hamid, Z. Kristalogr. 154, 189 (1981)Google Scholar
  2. 2.
    S. Merlino, E. Bonaccorsi, T. Armbruster, Eur. J. Mineral. 13, 577 (2001). doi:10.1127/0935-1221/2001/0013-0577 CrossRefGoogle Scholar
  3. 3.
    S. Komarneni, D.M. Roy, Science 22, 647 (1983). doi:10.1126/science.221.4611.647 CrossRefADSGoogle Scholar
  4. 4.
    N.J. Coleman, Mater. Res. Bull. 40, 2000 (2005). doi:10.1016/j.materresbull.2005.05.006 CrossRefGoogle Scholar
  5. 5.
    T. Kokubo, Mater. Sci. Eng. C 25, 97 (2005). doi:10.1016/j.msec.2005.01.002 CrossRefGoogle Scholar
  6. 6.
    T. Kokubo, H. Takadama, Biomaterials 27, 2907 (2006). doi:10.1016/j.biomaterials.2006.01.017 PubMedCrossRefGoogle Scholar
  7. 7.
    K. Lin, J. Chang, R. Cheng, Acta Biomater. 3, 271 (2007). doi:10.1016/j.actbio.2006.11.003 PubMedCrossRefGoogle Scholar
  8. 8.
    M. Bellantone, N.J. Coleman, L.L. Hench, J. Biomed. Mater. Res. 51, 484 (2000). doi:10.1002/1097-4636(20000905)51:3<484::AID-JBM24>3.0.CO;2-4 PubMedCrossRefGoogle Scholar
  9. 9.
    M. Bellantone, N.J. Coleman, L.L. Hench, Key Eng. Mater. 192–195, 597 (2001)CrossRefGoogle Scholar
  10. 10.
    W. Chen, Y. Liu, H.S. Courtney, M. Bettenga, C.M. Agrawal, J.D. Bumgardner, J.L. Ong, Biomaterials 27, 5512 (2006). doi:10.1016/j.biomaterials.2006.07.003 PubMedCrossRefGoogle Scholar
  11. 11.
    I. Ahmed, D. Ready, M. Wilson, J. Knowles, J. Biomed. Mater. Res. A 79, 618 (2006). doi:10.1002/jbm.a.30808 PubMedGoogle Scholar
  12. 12.
    A.B.G. Lansdown, Curr. Probl. Dermatol. 33, 17 (2006). doi:10.1159/000093928 PubMedCrossRefGoogle Scholar
  13. 13.
    X. Chen, H.J. Schluesener, Toxicol. Lett. 176, 1 (2008). doi:10.1016/j.toxlet.2007.10.004 PubMedCrossRefGoogle Scholar
  14. 14.
    K.R. Bright, C.P. Gerba, P.A. Rusin, J. Hosp. Infect. 52, 307 (2002). doi:10.1053/jhin.2002.1317 PubMedCrossRefGoogle Scholar
  15. 15.
    M.C. Bonferoni, G. Cerri, M. de’ Gennaro, C. Juliano, C. Caramella, Appl. Clay Sci. 36, 95 (2007). doi:10.1016/j.clay.2006.04.014 CrossRefGoogle Scholar
  16. 16.
    N.J. Coleman, D.S. Brassington, Mater. Res. Bull. 38, 485 (2003). doi:10.1016/S0025-5408(02)01056-5 CrossRefGoogle Scholar
  17. 17.
    G.L. Kalousek, J. Am. Ceram. Soc. 40, 74 (1957). doi:10.1111/j.1151-2916.1957.tb12579.x CrossRefGoogle Scholar
  18. 18.
    S. Shaw, C.M.B. Henderson, B.U. Komanschek, Chem. Geol. 167, 141 (2000). doi:10.1016/S0009-2541(99)00206-5 CrossRefGoogle Scholar
  19. 19.
    N.J. Coleman, D.S. Brassington, A. Raza, A.P. Mendham, Waste Manag. 26, 260 (2006). doi:10.1016/j.wasman.2005.01.019 PubMedCrossRefGoogle Scholar
  20. 20.
    R.J. Kirkpatrick, J.L. Yarger, P.F. McMillan, P. Yu, X. Cong, Adv. Cement Base. Mater. 5, 93 (1997). doi:10.1016/S1065-7355(97)00001-1 CrossRefGoogle Scholar
  21. 21.
    N.Y. Mostafa, A.A. Shaltout, H. Omarb, S.A. Abo-El-Enein, J. Alloy. Compd. doi:10.1016/j.jallcom.2007.11.130
  22. 22.
    C. Ohtsuki, T. Kokubo, T. Yamamuro, J. Non-Cryst. Solid 143, 84 (1992). doi:10.1016/S0022-3093(05)80556-3 CrossRefADSGoogle Scholar
  23. 23.
    N. Patel, S.M. Best, W. Bonfield, I.R. Gibson, K.A. Hing, E. Damien, P.A. Revell, J. Mater. Sci. Mater. Med. 13, 1199 (2002). doi:10.1023/A:1021114710076 PubMedCrossRefGoogle Scholar
  24. 24.
    I.D. Xynos, A.J. Edgar, L.D.K. Buttery, L.L. Hench, J.M. Polak, J. Biomed. Mater. Res. 55, 151 (2001). doi:10.1002/1097-4636(200105)55:2<151::AID-JBM1001>3.0.CO;2-D PubMedCrossRefGoogle Scholar
  25. 25.
    M. Miyake, S. Komarneni, R. Roy, Mater. Res. Bull. 24, 311 (1989). doi:10.1016/0025-5408(89)90217-1 CrossRefGoogle Scholar
  26. 26.
    S. Komarneni, R. Roy, D.M. Roy, Cement Concr. Res. 16, 47 (1986). doi:10.1016/0008-8846(86)90067-0 CrossRefGoogle Scholar
  27. 27.
    N. Kanzaki, K. Onuma, G. Treboux, S. Tsutsumi, A. Ito, J. Phys. Chem. B 104, 4189 (2000). doi:10.1021/jp9939726 CrossRefGoogle Scholar
  28. 28.
    N. Kanzaki, K. Onuma, G. Treboux, S. Tsutsumi, A. Ito, J. Phys. Chem. B 105, 1991 (2000). doi:10.1021/jp003295b CrossRefGoogle Scholar
  29. 29.
    A. Ito, H. Kawamura, M. Otsuka, M. Ikeuchi, H. Ohgushi, K. Ishikawa, K. Onuma, N. Kanzaki, Y. Sogo, N. Ichinose, Mater. Sci. Eng. C 22, 21 (2002). doi:10.1016/S0928-4931(02)00108-X CrossRefGoogle Scholar
  30. 30.
    A. Ito, M. Otsuka, H. Kawamura, M. Ikeuchi, H. Ohgushi, Y. Sogo, N. Ichinose, Curr. Appl. Phys. 5, 402 (2005). doi:10.1016/j.cap.2004.10.006 CrossRefADSGoogle Scholar
  31. 31.
    V. Aina, A. Perardi, L. Bergandi, G. Malavasi, L. Menabue, C. Morterra, D. Ghigo, Chem. Biol. Interact. 167, 207 (2007). doi:10.1016/j.cbi.2007.03.002 PubMedCrossRefGoogle Scholar
  32. 32.
    A.G. Gristina, Science 237, 1588 (1987). doi:10.1126/science.3629258 PubMedCrossRefADSGoogle Scholar
  33. 33.
    J.M. Schierholz, J. Beuth, J. Hosp. Infect. 49, 87 (2001). doi:10.1053/jhin.2001.1052 PubMedCrossRefGoogle Scholar
  34. 34.
    T. Haile, G. Nakhla, E. Allouche, Corros. Sci. 50, 713 (2008). doi:10.1016/j.corsci.2007.08.012 CrossRefGoogle Scholar
  35. 35.
    S. Quintavalla, L. Vicini, Meat Sci. 62, 373 (2002). doi:10.1016/S0309-1740(02)00121-3 CrossRefGoogle Scholar
  36. 36.
    H. Huang, Y. Yang, Compos. Sci. Technol. doi:10.1016/j.compscitech.2007.10.003
  37. 37.
    A. Top, S. Ülkü, Appl. Clay Sci. 27, 13 (2004). doi:10.1016/j.clay.2003.12.002 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.School of ScienceUniversity of GreenwichKentUK

Personalised recommendations