Proliferation and function of MC3T3-E1 cells on freeze-cast hydroxyapatite scaffolds with oriented pore architectures

  • Qiang Fu
  • Mohamed N. Rahaman
  • B. Sonny Bal
  • Roger F. Brown


Previous work by the authors showed that hydroxyapatite (HA) scaffolds with different types of oriented microstructures and a unique ‘elastic–plastic’ mechanical response could be prepared by unidirectional freezing of suspensions. The objective of the present work was to evaluate the in vitro cellular response to these freeze-cast HA scaffolds. Unidirectional scaffolds with approximately the same porosity (65–70%) but different pore architectures, described as ‘lamellar’ (pore width = 25 ± 5 μm) and ‘cellular’ (pore diameter = 100 ± 10 μm), were evaluated. Whereas both groups of scaffolds showed excellent ability to support the proliferation of MC3T3-E1 pre-osteoblastic cells on their surfaces, scaffolds with the cellular-type microstructure showed far better ability to support cell proliferation into the pores and cell function. These results indicate that freeze-cast HA scaffolds with the cellular-type microstructure have better potential for bone repair applications.


Alkaline Phosphatase Activity Aqueous Suspension Bioactive Glass Pore Width Purple Formazan 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    L.L. Hench, Bioceramics. J. Am. Ceram. Soc. 81, 1705–1728 (1998)Google Scholar
  2. 2.
    A. El-Ghannam, Bone reconstruction: from bioceramics to tissue engineering. Expert Rev. Med. Devices 2, 87–101 (2005). doi: 10.1586/17434440.2.1.87 PubMedCrossRefGoogle Scholar
  3. 3.
    M.N. Rahaman, R.F. Brown, B.S. Bal, D.E. Day, Bioactive glasses for non-bearing applications in total joint replacement. Semin. Arthroplasty 17, 102–112 (2006). doi: 10.1053/j.sart.2006.09.003 CrossRefGoogle Scholar
  4. 4.
    L.M. Rodríguez-Lorenzo, M. Vallet-Regí, J.M.F. Ferreira, Fabrication of porous hydroxyapatite bodies by a new direct consolidation method: starch consolidation. J. Biomed. Mater. Res. 60, 232–240 (2002). doi: 10.1002/jbm.10036 PubMedCrossRefGoogle Scholar
  5. 5.
    S.H. Li, J.R. De Wijn, P. Layrolle, K. De Groot, Synthesis of macroporous hydroxyapatite scaffolds for bone tissue engineering. J. Biomed. Mater. Res. 61, 109–120 (2002). doi: 10.1002/jbm.10163 PubMedCrossRefGoogle Scholar
  6. 6.
    P. Sepulveda, J.G. Binner, S.O. Rogero, O.Z. Higa, J.C. Bressiani, Production of porous hydroxyapatite by the gel-casting of foams and cytotoxic evaluation. J. Biomed. Mater. Res. 50, 27–34 (2000). doi:10.1002/(SICI)1097-4636(200004)50:1<27::AID-JBM5>3.0.CO;2-6PubMedCrossRefGoogle Scholar
  7. 7.
    N. Tamai, A. Myoui, T. Tomita, T. Nakase, J. Tanaka, T. Ochi, H. Yoshikawa, Novel hydroxyapatite ceramics with an interconnective porous structure exhibit superior osteoconduction in vivo. J. Biomed. Mater. Res. 59, 110–117 (2002). doi: 10.1002/jbm.1222 PubMedCrossRefGoogle Scholar
  8. 8.
    Q.Z. Chen, I.D. Thompson, A.R. Boccaccini, 45S5 Bioglass®-derived glass-ceramic scaffold for bone tissue engineering. Biomaterials 27, 2414–2425 (2006). doi: 10.1016/j.biomaterials.2005.11.025 PubMedCrossRefGoogle Scholar
  9. 9.
    C. Wu, J. Chang, W. Zhai, S. Ni, J. Wang, Porous akermanite scaffolds for bone tissue engineering: preparation, characterization, and in vitro studies. J. Biomed. Mater. Res. B Appl. Biomater. 78B, 47–55 (2006). doi: 10.1002/jbm.b.30456 CrossRefGoogle Scholar
  10. 10.
    Q. Fu, M.N. Rahaman, B.S. Bal, R.F. Brown, D.E. Day, Mechanical and in vitro performance of 13-93 bioactive glass scaffolds prepared by a polymer foam replication technique. Acta Biomater. 4, 1854–1864 (2008). doi: 10.1016/j.actbio.2008.04.019 PubMedCrossRefGoogle Scholar
  11. 11.
    Q. Fu, M.N. Rahaman, W. Huang, D.E. Day, B.S. Bal, Preparation and bioactive characteristics of a porous 13-93 glass, and its fabrication into the articulating surface of a proximal tibia. J. Biomed. Mater. Res. A 82A, 222–229 (2007). doi: 10.1002/jbm.a.31156 CrossRefGoogle Scholar
  12. 12.
    J.G. Dellinger, J. Cesarano III, R.D. Jamison, Robotic deposition of model hydroxyapatite scaffolds with multiple architectures and multiscale porosity for bone tissue engineering. J. Biomed. Mater. Res. A 82A, 383–394 (2007). doi: 10.1002/jbm.a.31072 CrossRefGoogle Scholar
  13. 13.
    C.Y. Lin, T. Wirtz, F. LaMarca, S.J. Hollister, Structural and mechanical evaluations of a topology optimized titanium interbody fusion cage fabricated by selective laser melting process. J. Biomed. Mater. Res. A 83A, 272–279 (2007). doi: 10.1002/jbm.a.31231 CrossRefGoogle Scholar
  14. 14.
    S. Deville, E. Saiz, A. Tomsia, Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials 27, 5480–5489 (2006). doi: 10.1016/j.biomaterials.2006.06.028 PubMedCrossRefGoogle Scholar
  15. 15.
    S. Deville, E. Saiz, R.K. Nalla, A. Tomsia, Freezing as a path to build complex composites. Science 311, 515–518 (2006). doi: 10.1126/science.1120937 PubMedCrossRefADSGoogle Scholar
  16. 16.
    Q. Fu, M.N. Rahaman, F. Dogan, B.S. Bal, Freeze casting of porous hydroxyapatite scaffolds—I. Processing and general microstructure. J. Biomed. Mater. Res. B Appl. Biomater. 86B, 125–135 (2008). doi: 10.1002/jbm.b.30997 CrossRefGoogle Scholar
  17. 17.
    Q. Fu, M.N. Rahaman, F. Dogan, B.S. Bal, Freeze casting of porous hydroxyapatite scaffolds—II. Sintering, microstructure, and mechanical properties. J. Biomed. Mater. Res. B Appl. Biomater. 86B, 514–522 (2008). doi: 10.1002/jbm.b.31051 PubMedCrossRefGoogle Scholar
  18. 18.
    Q. Fu, M.N. Rahaman, F. Dogan, B.S. Bal, Freeze-cast hydroxyapatite scaffolds for bone tissue engineering applications. Biomed Mater 3, 025005 (2008). doi: 10.1088/1748-6041/3/2/025005 CrossRefADSGoogle Scholar
  19. 19.
    J.O. Hollinger, K. Leong, Poly(a-hydroxy acids): carriers for bone morphogenetic proteins. Biomaterials 17, 187–194 (1996). doi: 10.1016/0142-9612(96)85763-2 PubMedCrossRefGoogle Scholar
  20. 20.
    Y.H. Hu, D.W. Grainger, S.R. Winn, J.O. Hollinger, Fabrication of poly(a-hydroxy acid) foam scaffolds using multiple solvent systems. J. Biomed. Mater. Res. 59, 563–572 (2002). doi: 10.1002/jbm.1269 PubMedCrossRefGoogle Scholar
  21. 21.
    S. Foppiano, S.J. Marshall, G.W. Marshall, E. Saiz, A.P. Tomsia, The influence of novel bioactive glasses on in vitro osteoblast behavior. J. Biomed. Mater. Res. A 71A, 242–249 (2004). doi: 10.1002/jbm.a.30159 CrossRefGoogle Scholar
  22. 22.
    R.F. Brown, D.E. Day, T.E. Day, S. Jung, M.N. Rahaman, Q. Fu, Growth and differentiation of osteoblastic cells on 13-93 bioactive glass fibers and scaffolds. Acta Biomater. 4, 387–396 (2008). doi: 10.1016/j.actbio.2007.07.006 PubMedCrossRefGoogle Scholar
  23. 23.
    A. Sabokar, P.J. Millett, B. Myer, N. Rushton, A rapid, quantitative assay for measuring alkaline phosphatase in osteoblastic cells in vitro. Bone Miner. 27, 57–67 (1994). doi: 10.1016/S0169-6009(08)80187-0 CrossRefGoogle Scholar
  24. 24.
    M.N. Rahaman, Q. Fu, Manipulation of porous bioceramic microstructures by freezing of aqueous suspensions with binary mixtures of solvents. J. Am. Ceram. Soc. 91(12), 4137–4140 (2008). doi: 10.1111/j.1551-2916.2008.02795.x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Qiang Fu
    • 1
    • 2
  • Mohamed N. Rahaman
    • 1
    • 2
  • B. Sonny Bal
    • 3
  • Roger F. Brown
    • 2
    • 4
  1. 1.Department of Materials Science and EngineeringMissouri University of Science and TechnologyRollaUSA
  2. 2.Center for Bone and Tissue Repair and RegenerationMissouri University of Science and TechnologyRollaUSA
  3. 3.Department of Orthopaedic SurgeryUniversity of Missouri-ColumbiaColumbiaUSA
  4. 4.Department of Biological SciencesMissouri University of Science and TechnologyRollaUSA

Personalised recommendations