Multilayer coatings on biomaterials for control of MG-63 osteoblast adhesion and growth

  • Kristin Kirchhof
  • Kamelia Hristova
  • Natalia Krasteva
  • George Altankov
  • Thomas GrothEmail author


Here, the layer-by-layer technique (LbL) was used to modify glass as model biomaterial with multilayers of chitosan and heparin to control the interaction with MG-63 osteoblast-like cells. Different pH values during multilayer formation were applied to control their physico-chemical properties. In the absence of adhesive proteins like plasma fibronectin (pFN) both plain layers were rather cytophobic. Hence, the preadsorption of pFN was used to enhance cell adhesion which was strongly dependent on pH. Comparing the adhesion promoting effects of pFN with an engineered repeat of the FN III fragment and collagen I which both lack a heparin binding domain it was found that multilayers could bind pFN specifically because only this protein was capable of promoting cell adhesion. Multilayer surfaces that inhibited MG-63 adhesion did also cause a decreased cell growth in the presence of serum, while an enhanced adhesion of cells was connected to an improved cell growth.


Chitosan Heparin Contact Angle Water Contact Angle Biomaterial Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by Graduiertenförderung des Landes Sachsen-Anhalt with a Ph.D. scholarship to KK and the German Academic Exchange Service (DAAD) in the frame of a bilateral exchange program between Germany and Bulgaria. Dr. J. Vogel is acknowledged for scientific support and discussion.


  1. 1.
    K. Anselme, Biomaterials 21, 667–681 (2000). doi: 10.1016/S0142-9612(99)00242-2 PubMedCrossRefGoogle Scholar
  2. 2.
    L. He, A. Dexter, A. Middelberg, Chem. Eng. Sci. 61, 989–1003 (2006). doi: 10.1016/j.ces.2005.05.064 CrossRefGoogle Scholar
  3. 3.
    T. Groth, Z.M. Liu, M. Niepel, D. Peschel, K. Kirchhof, G. Altankov, N. Faucheux in NATO Science Series. Nanoengineered Systems for Regenerative Medicine, ed. by V. Shastri, G. Altankov (Springer, New York, 2009) (accepted for publication)Google Scholar
  4. 4.
    T. Groth, Z.M. Liu, in Membranes for the Life Sciences, ed. by K.V. Peinemann, S. Pereira Nunes (Wiley-VCH, Weinheim, 2007), p. 27Google Scholar
  5. 5.
    N. Krasteva, B. Seifert, M. Hopp, G. Malsch, W. Albrecht, G. Altankov, T. Groth, J. Biomater. Sci. Polym. Ed. 16, 1–22 (2005). doi: 10.1163/1568562052843348 PubMedCrossRefGoogle Scholar
  6. 6.
    G. Boese, C. Trimpert, W. Albrecht, G. Malsch, T. Groth, A. Lendlein, Tissue Eng. 13, 2995–3002 (2007). doi: 10.1089/ten.2006.0442 PubMedCrossRefGoogle Scholar
  7. 7.
    Z. Tang, Y. Wang, P. Podsiadlo, N.A. Kotov, Adv. Mater. 18, 3203–3224 (2006). doi: 10.1002/adma.200600113 CrossRefGoogle Scholar
  8. 8.
    U. Hersel, C. Dahmen, H. Kessler, Biomaterials 24, 4385–4415 (2003). doi: 10.1016/S0142-9612(03)00343-0 PubMedCrossRefGoogle Scholar
  9. 9.
    S. Roessler, R. Born, D. Scharnweber, H. Worch, A. Sewing, M. Dard, J. Mater. Sci. Mater. Med. 12, 871–877 (2001). doi: 10.1023/A:1012807621414 PubMedCrossRefGoogle Scholar
  10. 10.
    T.A. Petrie, J.R. Capadona, C.D. Reyes, A. Garcia, Biomaterials 27, 5459–5470 (2007). doi: 10.1016/j.biomaterials.2006.06.027 CrossRefGoogle Scholar
  11. 11.
    I.K. Kang, O.H. Kwon, K.H. Byun, Y. Kim, J. Mater. Sci. Mater. Med. 7, 135–140 (1996). doi: 10.1007/BF00121251 CrossRefGoogle Scholar
  12. 12.
    B. Seifert, P. Romaniuk, T. Groth, J. Mater. Sci. Mater. Med. 7, 465–469 (1996). doi: 10.1007/BF00705426 CrossRefGoogle Scholar
  13. 13.
    P.J. Schoen, The Anti-Coagulant Activity of Heparin–Biochemical Studies in Purified Systems (Datawyse, Maastricht, 1991)Google Scholar
  14. 14.
    R. Pankov, K.M. Yamada, J. Cell. Sci. 115, 3861–3863 (2002). doi: 10.1242/jcs.00059 PubMedCrossRefGoogle Scholar
  15. 15.
    S. Ayad, R. Boot-Handford, M.J. Humphries, K.E. Kadler, A. Shuttleworth, The Extracellular Matrix. Facts Book (Academic Press, London, 1994)Google Scholar
  16. 16.
    H.P. Tan, Y.H. Gong, L.H. Lao, Z.W. Mao, C.Y. Gao, J. Mater. Sci. Mater. Med. 18, 1961–1968 (2007). doi: 10.1007/s10856-007-3095-5 PubMedCrossRefGoogle Scholar
  17. 17.
    J. Fu, J. Ji, W. Yuan, J. Shen, Biomaterials 26, 6684–6692 (2005). doi: 10.1016/j.biomaterials.2005.04.034 PubMedCrossRefGoogle Scholar
  18. 18.
    J.A. Hubbell, Biomaterials in Tissue Engineering. Biotechnology 13, 565–576 (1995). doi: 10.1038/nbt0695-565 PubMedCrossRefGoogle Scholar
  19. 19.
    T. Boontheekul, D.J. Mooney, Curr. Opin. Biotechnol. 14, 1–7 (2003). doi: 10.1016/j.copbio.2003.08.004 CrossRefGoogle Scholar
  20. 20.
    G. Decher, Science 277,1232–1237 (1997)Google Scholar
  21. 21.
    P.T. Hammond, Adv. Mater. 16, 1271–1293 (2004). doi: 10.1002/adma.200400760 CrossRefGoogle Scholar
  22. 22.
    G. Decher, J.B. Schlenoff, Multilayer Thin Films (Wiley-VCH, Weinheim, 2003)Google Scholar
  23. 23.
    T. Groth, A. Lendlein, Angew. Chem. Int. Ed. 43, 926–928 (2004). doi: 10.1002/anie.200301708 CrossRefGoogle Scholar
  24. 24.
    M. Kumar, React. Funct. Polym. 46, 1–27 (2000). doi: 10.1016/S1381-5148(00)00038-9 CrossRefGoogle Scholar
  25. 25.
    B. Casu, Carbohydr. Eur. 11, 18–21 (1994)Google Scholar
  26. 26.
    N. Faucheux, R. Schweiss, K. Luetzow, C. Werner, T. Groth, Biomaterials 25, 2721–2730 (2004). doi: 10.1016/j.biomaterials.2003.09.069 PubMedCrossRefGoogle Scholar
  27. 27.
    S. Boddohi, C.E. Killingsworth, M.J. Kipper, Biomacromolecules 9, 2021–2028 (2008). doi: 10.1021/bm8002573 PubMedCrossRefGoogle Scholar
  28. 28.
    D.S. Salloum, J.B. Schlenoff, Biomacromolecules 5, 1089–1096 (2004). doi: 10.1021/bm034522t PubMedCrossRefGoogle Scholar
  29. 29.
    B. Schoeler, N. Delorme, I. Doench, G.B. Sukhorukov, A. Fery, K. Glinel, Biomacromolecules 7, 2065–2071 (2006). doi: 10.1021/bm060378a PubMedCrossRefGoogle Scholar
  30. 30.
    D. Yoo, S.S. Shiratori, M. Rubner, Macromolecules 31, 4309–4318 (1998). doi: 10.1021/ma9800360 CrossRefGoogle Scholar
  31. 31.
    D.E. Discher, P. Janmey, Y. Wang, Science 310, 1139–1143 (2005). doi: 10.1126/science.1116995 PubMedCrossRefADSGoogle Scholar
  32. 32.
    A. Schneider, G. Francius, R. Obeid, P. Schwinté, J. Hemmerlé, B. Frisch, P. Schaaf, J.P. Voegel, B. Senger, C. Picart, Langmuir 22, 1193–1200 (2006). doi: 10.1021/la0521802 PubMedCrossRefGoogle Scholar
  33. 33.
    C.J. Wilson, R.E. Clegg, D.I. Leavesley, M.J. Pearcy, Tissue Eng. 11, 1–18 (2005). doi: 10.1089/ten.2005.11.1 PubMedCrossRefGoogle Scholar
  34. 34.
    R. Tzoneva, N. Faucheux, T. Groth, Biochim. et. Biophys. Acta–Gen. Subjects 1770, 1538–1547 (2007)CrossRefGoogle Scholar
  35. 35.
    Y. Tamada, Y. Ikada, J. Biomed. Mater. Res. 28, 783–789 (1994). doi: 10.1002/jbm.820280705 PubMedCrossRefGoogle Scholar
  36. 36.
    R.E. Baier, A.E. Meyer, J.R. Natiella, R.R. Natiella, J.M. Carter, J. Biomed. Mater. Res. 18, 337–355 (1984). doi: 10.1002/jbm.820180404 CrossRefGoogle Scholar
  37. 37.
    G. Altankov, K. Richau, T. Groth, Materialwiss. Engin. 34, 1120–1128 (2003)Google Scholar
  38. 38.
    M.H. Lee, P. Ducheyne, L. Lynch, D. Boettiger, R.J. Composto, Biomaterials 27, 1907–1916 (2006). doi: 10.1016/j.biomaterials.2005.11.003 PubMedCrossRefGoogle Scholar
  39. 39.
    J. Vitte, A.M. Benoliel, A. Pierres, P. Bongrand, Eur. Cell Mater. 7, 52–63 (2004)PubMedGoogle Scholar
  40. 40.
    N. Faucheux, R. Tzoneva, M.D. Nagel, T. Groth, Biomaterials 27, 234–245 (2006). doi: 10.1016/j.biomaterials.2005.05.076 PubMedCrossRefGoogle Scholar
  41. 41.
    B.G. Keselowsky, D.M. Collard, A.J. Garcia, J. Biomed. Mater. Res. 66A, 247–259 (2003). doi: 10.1002/jbm.a.10537 CrossRefGoogle Scholar
  42. 42.
    S.A. Sukhishvili, E. Kharlampieva, V. Izumrudov, Macromolecules 39, 8873–8881 (2006). doi: 10.1021/ma061617p CrossRefGoogle Scholar
  43. 43.
    B. Sim, J. Cladera, P. O’Shea, J. Biomed. Mater. Res. 68A, 352–359 (2004). doi: 10.1002/jbm.a.20022 CrossRefGoogle Scholar
  44. 44.
    L. Bacakova, E. Filova, F. Ripacek, V. Svorcik, V. Stary, Physiol. Res. 53(Suppl. 1), S35–S45 (2004)PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Kristin Kirchhof
    • 1
  • Kamelia Hristova
    • 2
  • Natalia Krasteva
    • 2
  • George Altankov
    • 2
    • 3
  • Thomas Groth
    • 1
    Email author
  1. 1.Biomedical Materials Group, Department of Pharmaceutics and Biopharmaceutics, Institute of PharmacyMartin Luther University Halle-WittenbergHalle (Saale)Germany
  2. 2.Institute of BiophysicsBulgarian Academy of SciencesSofiaBulgaria
  3. 3.ICREA & Institute of Bioengineering CatalunyaBarcelonaSpain

Personalised recommendations