Advertisement

Promising trends of bioceramics in the biomaterials field

  • D. Arcos
  • I. Izquierdo-Barba
  • M. Vallet-Regí
Article

Abstract

Biomedical scientific community is currently demanding new advances in the designing of 3rd generation bioceramics, which promote bone tissue regeneration. In the last years, the development of supramolecular chemistry and the application of organic-inorganic hybrid materials in the biomedical field have resulted in a new generation of advanced bioceramics, which exhibit fascinating properties for regenerative purposes together with the possibility of being used as carriers of biologically active molecules. This communication overviews the evolution occurred from the first silica based bioceramics to the last advances in the synthesis of bioceramics for bone tissue regeneration. A critical review concerning the first bioactive glasses as well as the newest hybrid bioactive materials and templated mesoporous bioactive systems, will be performed from the point of view of their potential applications as replacement materials in bone repair and regeneration.

Keywords

Simulated Body Fluid Mesoporous Material Bioactive Glass Amorphous Calcium Phosphate Bone Tissue Regeneration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors would like to thank all members of our research team who have contributed with the results described in this work, and whose names are collected in the reference sections. We also thank the Spanish National Science and technology commission (grant MAT-2005-01486) and Autonomous Government of Madrid (grant S-0505/MAT/0324) for financial support.

References

  1. 1.
    A.J. Salinas, M. Vallet-Regi, Z Anorg Allg Chem 633, 1762 (2007). doi: 10.1002/zaac.200700278 CrossRefGoogle Scholar
  2. 2.
    M. Vallet-Regí, Dalton Trans. 44, 5211 (2006). doi: 10.1039/b610219k PubMedCrossRefGoogle Scholar
  3. 3.
    A. El-Ghannam, Exp. Rev. Med. Dev 2, 87 (2005). doi: 10.1586/17434440.2.1.87 CrossRefGoogle Scholar
  4. 4.
    L.L. Hench, J.M. Polak, Science 296, 296 (2001)Google Scholar
  5. 5.
    L.L. Hench, J. Mater. Sci. Mater. Med. 17, 967 (2006). doi: 10.1007/s10856-006-0432-z PubMedCrossRefGoogle Scholar
  6. 6.
    R. Li, A.E. Clark, L.L. Hench, J. Appl. Biomater. 2, 231 (1991). doi: 10.1002/jab.770020403 PubMedCrossRefGoogle Scholar
  7. 7.
    M.M. Pereira, L.L. Hench, J. Sol-Gel Sci. 7, 59 (1996). doi: 10.1007/BF00401884 CrossRefGoogle Scholar
  8. 8.
    M. Vallet-Regí, C.V. Ragel, A.J. Salinas, Eur. J. Inorg. Chem. 1029 (2003). doi: 10.1002/ejic.200390134
  9. 9.
    M. Vallet-Regi, D. Arcos, Curr. Nano. 2, 179 (2006)Google Scholar
  10. 10.
    I.D. Xynos, A.J. Edgar, L.D.K. Buttery, L.L. Hench, J.M. Polak, Biochem. Biophys. Res. Commun. 276, 461 (2000). doi: 10.1006/bbrc.2000.3503 PubMedCrossRefGoogle Scholar
  11. 11.
    I.D. Xynos, M.V.J. Hukkanen, J.J. Batten, L.D. Buttery, L.L. Hench, J.M. Polak, Calcif. Tissue Int. 67, 321 (2000). doi: 10.1007/s002230001134 PubMedCrossRefGoogle Scholar
  12. 12.
    I.D. Xynos, A.J. Edgar, L.D.K. Buttery, L.L. Hench, J.M. Polak, J. Biomed. Mater. Res. 55, 151 (2001). doi :10.1002/1097-4636(200105)55:2<151::AID-JBM1001>3.0.CO;2-DPubMedCrossRefGoogle Scholar
  13. 13.
    E.M. Carlisle, Science 167, 179 (1970). doi: 10.1126/science.167.3916.279 CrossRefGoogle Scholar
  14. 14.
    E.M. Carlisle, Calcif. Tissue Int. 33, 27 (1981). doi: 10.1007/BF02409409 PubMedCrossRefGoogle Scholar
  15. 15.
    M. Vallet-Regí, D. Arcos, J. Mater. Chem. 15, 1509 (2005). doi: 10.1039/b414143a CrossRefGoogle Scholar
  16. 16.
    P. Valero, M.M. Pereira, A.M. Goes, M.F. Leite, Biomaterials 25, 2941 (2004). doi: 10.1016/j.biomaterials.2003.09.086 CrossRefGoogle Scholar
  17. 17.
    D. Arcos, J. Rodríguez-Carvajal, M. Vallet-Regí, Chem. Mater. 16, 2300 (2004). doi: 10.1021/cm035337p CrossRefGoogle Scholar
  18. 18.
    D. Arcos, S. Sánchez-Salcedo, I. Izquierdo-Barba, L. Ruiz, J. González-Calbet, M. Vallet-Regí, J. Biomed. Mater. Res. 78A, 762 (2006). doi: 10.1002/jbm.a.30790 CrossRefGoogle Scholar
  19. 19.
    D. Arcos, D.C. Greenspan, M. Vallet-Regí, Chem. Mater. 14, 1515 (2002). doi: 10.1021/cm011119p CrossRefGoogle Scholar
  20. 20.
    D. Arcos, D.C. Greenspan, M. Vallet-Regí, J. Biomed. Mater. Res. 65A, 344 (2003). doi: 10.1002/jbm.a.10503 CrossRefGoogle Scholar
  21. 21.
    J. Zhong, D.C. Greenspan, J. Biomed. Mater. Res. Appl. Biomater. 53, 694 (2000). doi :10.1002/1097-4636(2000)53:6<694::AID-JBM12>3.0.CO;2-6CrossRefGoogle Scholar
  22. 22.
    J. Zhong, D.C. Greenspan, Bioceramics 10, 265 (1997). doi: 10.1016/B978-008042692-1/50063-7 CrossRefGoogle Scholar
  23. 23.
    K. Tsuru, C. Ohtsuki, A. Osaka, T. Iwamoto, J.D. Mackenzie, J. Mater. Sci. Mater. Med. 8, 157 (1997). doi: 10.1023/A:1018523203667 PubMedCrossRefGoogle Scholar
  24. 24.
    Q. Chen, F. Miyaji, T. Kokubo, T. Nakamura, Biomaterials 20, 1127 (1999). doi: 10.1016/S0142-9612(99)00015-0 PubMedCrossRefGoogle Scholar
  25. 25.
    C. Sanchez, B. Lebeau, F. Chaput, J.P. Boilot, Adv. Mater. 15, 1969 (2003). doi: 10.1002/adma.200300389 CrossRefGoogle Scholar
  26. 26.
    B.M. Novak, Adv. Mater. 5, 422 (1993). doi: 10.1002/adma.19930050603 CrossRefGoogle Scholar
  27. 27.
    U. Schubert, N. Hüsing, A. Lorenz, Chem. Mater. 7, 2010 (1995). doi: 10.1021/cm00059a007 CrossRefGoogle Scholar
  28. 28.
    A.I. Martín, A.J. Salinas, M. Vallet-Regí, J. Eur. Ceram. Soc. 25, 3533 (2005). doi: 10.1016/j.jeurceramsoc.2004.09.030 CrossRefGoogle Scholar
  29. 29.
    A.J. Salinas, J.M. Merino, N. Hijón, A.I. Martín, M. Vallet-Regí, Key Eng. Mater. 254–256, 481 (2004)CrossRefGoogle Scholar
  30. 30.
    S. Yamamoto, T. Miyamoto, T. Kokubo, T. Nakamura, Polym. Bull. 40, 243 (1998). doi: 10.1007/s002890050248 CrossRefGoogle Scholar
  31. 31.
    N. Miyata, K. Fuke, Q. Chen, M. Kawashita, T. Kokubo, T. Nakamura, Biomaterials 23, 3033 (2002). doi: 10.1016/S0142-9612(02)00065-0 PubMedCrossRefGoogle Scholar
  32. 32.
    M. Kamitakahara, M. Kawashita, N. Miyata, T. Kokubo, T. Nakamura, J. Mater. Sci. Mater. Med. 13, 1015 (2002). doi: 10.1023/A:1020324101682 PubMedCrossRefGoogle Scholar
  33. 33.
    M. Vallet-Regí, A.J. Salinas, J. Ramírez-Castellanos, J.M. González-Calbet, Chem. Mater. 17, 1874 (2005). doi: 10.1021/cm047956j CrossRefGoogle Scholar
  34. 34.
    N. Hijon, M. Manzano, A.J. Salinas, M. Vallet-Regí, Chem. Mater. 17, 1591 (2005). doi: 10.1021/cm048755i CrossRefGoogle Scholar
  35. 35.
    N. Miyata, K. Fuke, Q. Chen, K. Masakazu, T. Kokubo, T. Nakamura, Biomaterials 25, 1 (2004). doi: 10.1016/S0142-9612(03)00463-0 PubMedCrossRefGoogle Scholar
  36. 36.
    T. Miyazaki, C. Ohtsuki, M. Tanihara, J. Nanosci. Nanotechnol. 3, 511 (2003). doi: 10.1166/jnn.2003.221 PubMedCrossRefGoogle Scholar
  37. 37.
    L. Ren, K. Tsuru, S. Hayakawa, A. Osaka, Biomaterials 23, 4765 (2002). doi: 10.1016/S0142-9612(02)00226-0 PubMedCrossRefGoogle Scholar
  38. 38.
    S.H. Rhee, Biomaterials 25, 1167 (2005). doi: 10.1016/j.biomaterials.2003.08.004 CrossRefGoogle Scholar
  39. 39.
    M. Manzano, D. Arcos, M. Rodriguez Delgado, E. Ruiz, F.J. Gil, M. Vallet-Regí, Chem. Mater. 18, 5696 (2006). doi: 10.1021/cm0615370 CrossRefGoogle Scholar
  40. 40.
    J.R. Jones, L.L. Hench, J. Mater. Sci. 38, 3783 (2003). doi: 10.1023/A:1025988301542 CrossRefGoogle Scholar
  41. 41.
    J.R. Jones, L.L. Hench, J. Biomed. Mater. Res. B Appl. Biomater. 68B, 36 (2004). doi: 10.1002/jbm.b.10071 CrossRefGoogle Scholar
  42. 42.
    T. Yanagisawa, T. Shimizu, K. Kuroda, C. Kato, Bull. Chem. Soc. Jpn. 63, 988–992 (1990). doi: 10.1246/bcsj.63.988 CrossRefGoogle Scholar
  43. 43.
    C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Nature 359, 710 (1992). doi: 10.1038/359710a0 CrossRefADSGoogle Scholar
  44. 44.
    M.E. Davis, Nature 417, 813 (2002). doi: 10.1038/nature00785 PubMedCrossRefADSGoogle Scholar
  45. 45.
    M. Vallet-Regí, L. Ruiz-González, I. Izquierdo-Barba, J.M. González-Calbet, J. Mater. Chem. 16, 26 (2006). doi: 10.1039/b509744d CrossRefGoogle Scholar
  46. 46.
    I. Izquierdo-Barba, L. Ruiz-González, J.C. Doadrio, J.M. González-Calbet, M. Vallet-Regí, Solid State Sci. 7, 983 (2005). doi: 10.1016/j.solidstatesciences.2005.04.003 CrossRefADSGoogle Scholar
  47. 47.
    M. Vallet-Regí, I. Izquierdo-Barba, A. Rámila, J. Pérez-Pariente, F. Babonneau, J.M. González-Calbet, Solid State Sci. 7, 233 (2005). doi: 10.1016/j.solidstatesciences.2004.10.038 CrossRefADSGoogle Scholar
  48. 48.
    P. Horcajada, A. Rámila, K. Boulahya, J. González-Calbet, M. Vallet-Regí, Solid State Sci. 6, 1295 (2004). doi: 10.1016/j.solidstatesciences.2004.07.026 CrossRefADSGoogle Scholar
  49. 49.
    X. Yan, C. Yu, X. Zhou, J. Tang, D. Zhao, Angew. Chem. Int. Ed. 43, 5980 (2004). doi: 10.1002/anie.200460598 CrossRefGoogle Scholar
  50. 50.
    A. López-Noriega, D. Arcos, I. Izquierdo-Barba, Y. Sakamoto, O. Terasaki, M. Vallet-Regí, Chem. Mater. 18, 3137 (2006). doi: 10.1021/cm060488o CrossRefGoogle Scholar
  51. 51.
    I. Izquierdo-Barba, D. Arcos, Y. Sakamoto, O. Terasaki, A. Lopez-Noriega, M. Vallet-Regí, Chem. Mater. 20, 3191 (2008). doi: 10.1021/cm800172x CrossRefGoogle Scholar
  52. 52.
    L.L. Hench, J. Wilson, Science 226, 630 (1984). doi: 10.1126/science.6093253 PubMedCrossRefADSGoogle Scholar
  53. 53.
    W.E. Brown, N. Eidelman, B. Tomazic, Adv. Dent. Res. 1, 306 (1987)PubMedGoogle Scholar
  54. 54.
    P. Bodier-Houlle, P. Steuer, J.C. Voegel, F.J.G. Cuisinier, Acta Crystallogr. D54, 1377 (1998)Google Scholar
  55. 55.
    G.H. Nancollas, B. Tomazic, J. Phys. Chem. 78, 2218 (1974). doi: 10.1021/j100615a007 CrossRefGoogle Scholar
  56. 56.
    L.L. Hench, O. Anderssson, in Bioactive Glasses. An Introduction to Bioceramics, ed. by L.L. Hench, J. Wilson (Elsevier Science, New York, 1995), p. 477Google Scholar
  57. 57.
    M. Vallet-Regí, A. Ramila, R.P. Del Real, J. Pérez-Pariente, Chem. Mater. 13, 308 (2001). doi: 10.1021/cm0011559 CrossRefGoogle Scholar
  58. 58.
    M. Vallet-Regí, Chem. Eur. J. 12, 5934 (2006). doi: 10.1002/chem.200600226 CrossRefGoogle Scholar
  59. 59.
    M. Vallet-Regí, F. Balas, D. Arcos, Angew. Chem. Int. Ed. 47, 7548 (2007). doi: 10.1002/anie.200604488 CrossRefGoogle Scholar
  60. 60.
    K. Ariga, A. Vinu, J.P. Hill, T. Mori, Coord. Chem. Rev. 251, 2562 (2007). doi: 10.1016/j.ccr.2007.02.024 CrossRefGoogle Scholar
  61. 61.
    M. Vallet-Regí, F. Balas, M. Colilla, M. Manzano, Solid State Sci. 9, 768 (2007). doi: 10.1016/j.solidstatesciences.2007.03.026 CrossRefADSGoogle Scholar
  62. 62.
    M. Vallet-Regí, F. Balas, M. Colilla, M. Manzano, Drug Metab. Lett. 1, 37 (2007). doi: 10.2174/187231207779814382 CrossRefPubMedGoogle Scholar
  63. 63.
    M. Vallet-Regí, M. Colilla, I. Izquierdo-Barba, J. Biomed. Nanotech. 4, 1 (2008). doi: 10.1166/jbn.2008.002 Google Scholar
  64. 64.
    M. Vallet-Regí, F. Balas, M. Colilla, M. Manzano, Prog. Solid State Chem. 36, 163 (2008). doi: 10.1016/j.progsolidstchem.2007.10.002
  65. 65.
    G. Cavallaro, P. Pierro, F.S. Palumbo, F. Testa, L. Pasqua, R. Aiello, Drug Deliv. 11, 41 (2004). doi: 10.1080/10717540490265252 PubMedCrossRefGoogle Scholar
  66. 66.
    S.W. Song, K. Hidajat, S. Kawi, Langmuir 21, 9568 (2005). doi: 10.1021/la051167e PubMedCrossRefGoogle Scholar
  67. 67.
    P. Horcajada, A. Rámila, J. Pérez-Pariente, M. Vallet-Regí, Microporous Mesoporous Mater. 68, 105 (2004). doi: 10.1016/j.micromeso.2003.12.012 CrossRefGoogle Scholar
  68. 68.
    W. Zeng, X.F. Qian, Y.B. Zhang, J. Yin, Z.K. Zhu, Mater. Res. Bull. 40, 766 (2005). doi: 10.1016/j.materresbull.2005.02.011 CrossRefGoogle Scholar
  69. 69.
    F.Y. Qu, G.S. Zhu, S.Y. Huang, S.G. Li, J.Y. Sun, D.L. Zhang, S.L. Qiu, Microporous Mesoporous Mater. 92, 1 (2006). doi: 10.1016/j.micromeso.2005.12.004 CrossRefGoogle Scholar
  70. 70.
    I. Izquierdo-Barba, A. Martínez, A.L. Doadrio, J. Pérez-Pariente, M. Vallet-Regí, Eur. J. Pharm. Sci. 26, 365 (2005). doi: 10.1016/j.ejps.2005.06.009 PubMedCrossRefGoogle Scholar
  71. 71.
    F. Balas, M. Manzano, P. Horcajada, M. Vallet-Regí, J. Am. Chem. Soc. 128, 8116 (2006). doi: 10.1021/ja062286z PubMedCrossRefGoogle Scholar
  72. 72.
    B. Muñoz, A. Ramila, J. Pérez-Pariente, I. Díaz, M. Vallet-Regí, Chem. Mater. 15, 500 (2003). doi: 10.1021/cm021217q CrossRefGoogle Scholar
  73. 73.
    J.C. Doadrio, E.M.B. Sousa, I. Izquierdo-Barba, A.L. Doadrio, J. Pérez-Pariente, M. Vallet-Regí, J. Mater. Chem. 16, 462 (2006). doi: 10.1039/b510101h CrossRefGoogle Scholar
  74. 74.
    P. Horcajada, A. Rámila, G. Férey, M. Vallet-Regí, Solid State Sci. 8, 1243 (2006). doi: 10.1016/j.solidstatesciences.2006.04.016 CrossRefADSGoogle Scholar
  75. 75.
    A. Nieto, F. Balas, M. Colilla, M. Manzano, M. Vallet-Regí, Micro Mesoporous Mater. (2008). doi:  10.1016/j.micromeso.2008.03.025
  76. 76.
    F. Balas, M. Manzano, M. Colilla, M. Valle-Regí, Acta Biomater. 4, 514 (2008). doi: 10.1016/j.actbio.2007.11.009 PubMedCrossRefGoogle Scholar
  77. 77.
    M.J. Michalczyk, K.G. Sharp, US Patent 5, 378, 790 (1995)Google Scholar
  78. 78.
    W. Bonfield, J.C. Behiri, B. Charambilides, in Biomechanics: Current Interdisciplinary Research, ed. by S.M. Perrin, E. Scheider (Martinus Nijhoff, Dordrecht, 1984), p. 36Google Scholar
  79. 79.
    T.L. Norman, D. Vashischth, D.B. Burr, J. Biomech. 28, 309 (1995)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • D. Arcos
    • 1
    • 2
  • I. Izquierdo-Barba
    • 1
    • 2
  • M. Vallet-Regí
    • 1
    • 2
  1. 1.Departamento de Química Inorgánica y Bioinorgánica, Facultad de FarmaciaUniversidad Complutense de MadridMadridSpain
  2. 2.Centro de Investigación Biomédica en Red. Bioingeniería, Biomateriales, y Nanomedicina, CIBER-BBN MadridSpain

Personalised recommendations