Journal of Materials Science: Materials in Medicine

, Volume 20, Issue 2, pp 489–495

Expression of basal lamina components by Schwann cells cultured on poly(lactic acid) (PLLA) and poly(caprolactone) (PCL) membranes

  • A. Pierucci
  • E. A. R. Duek
  • A. L. R. de Oliveira
Article

Abstract

The present in vitro study investigated the expression of basal lamina components by Schwann cells (SCs) cultivated on PCL and PLLA membranes prepared by solvent evaporation. Cultures of SCs were obtained from sciatic nerves from neonatal Sprague Dawley rats and seeded on 24 well culture plates containing the polymer membranes. The purity of the cultures was evaluated with a Schwann cell marker antibody (anti-S-100). After one week, the cultures were fixed and processed for immunocytochemistry by using antibodies against type IV collagen, laminin I and II. Positive labeling against the studied molecules was observed, indicating that such biomaterials positively stimulate Schwann cell adhesion and proliferation. Overall, the present results provide evidence that membrane-derived biodegradable polymers, particularly those derived from PLLA, are able to provide adequate substrate and stimulate SCs to produce ECM molecules, what may have in turn positive effects in vivo, influencing the peripheral nerve regeneration process.

References

  1. 1.
    D.M. Barnes, What makes nerves regenerate? Many experimental strategies revolve around a central issue: what conditions promote regeneration and functional recovery in mammalian nerves? Science 230(4729), 1024–1025 (1985). doi:10.1126/science.4059920 PubMedCrossRefADSGoogle Scholar
  2. 2.
    C. Ide, Peripheral nerve regeneration. Neurosci. Res. 25(2), 101–121 (1996)Google Scholar
  3. 3.
    E.R. Lunn, M.C. Brown, V.H. Perry, The pattern of axonal degeneration in the peripheral nervous system varies with different types of lesion. Neuroscience 35(1), 157–165 (1990). doi:10.1016/0306-4522(90)90130-V PubMedCrossRefGoogle Scholar
  4. 4.
    D.W. Zochodne, The microenvironment of injured and regenerating peripheral nerves. Muscle Nerve 9, S33–S38 (2000). doi:10.1002/1097-4598(2000)999:9<::AID-MUS7>3.0.CO;2-FPubMedCrossRefGoogle Scholar
  5. 5.
    G. Stoll, S. Jander, R.R. Myers, Degeneration and regeneration of the peripheral nervous system: from Augustus Waller’s observations to neuroinflammation. J. Peripher. Nerv. Syst. 7(1), 13–27 (2002). doi:10.1046/j.1529-8027.2002.02002.x PubMedCrossRefGoogle Scholar
  6. 6.
    C.E. Schmidt, J.B. Leach, Neural tissue engineering: strategies for repair and regeneration. Annu. Rev. Biomed. Eng. 5, 293–347 (2003). doi:10.1146/annurev.bioeng.5.011303.120731 PubMedCrossRefGoogle Scholar
  7. 7.
    K.R. Jessen, R. Mirsky, Schwann cells and their precursors emerge as major regulators of nerve development. Trends Neurosci. 22(9), 402–410 (1999). doi:10.1016/S0166-2236(98)01391-5 PubMedCrossRefGoogle Scholar
  8. 8.
    C. Ide, K. Tohyama, R. Yokota, T. Nitatori, S. Onodera, Schwann cell basal lamina and nerve regeneration. Brain Res. 288(1–2), 61–75 (1983). doi:10.1016/0006-8993(83)90081-1 PubMedCrossRefGoogle Scholar
  9. 9.
    R.D. Madison, C.F. Da Silva, P. Dikkes, Entubulation repair with protein additives increases the maximum nerve gap distance successfully bridged with tubular prostheses. Brain Res. 447(2), 325–334 (1988). doi:10.1016/0006-8993(88)91135-3 PubMedCrossRefGoogle Scholar
  10. 10.
    S. Sunderland, The anatomy and physiology of nerve injury. Muscle Nerve 13(9), 771–784 (1990). doi:10.1002/mus.880130903 PubMedCrossRefGoogle Scholar
  11. 11.
    G. Lundborg, Peripheral nerve injuries: pathophysiology and strategies for treatment. J. Hand. Ther. 6(3), 179–188 (1993)PubMedGoogle Scholar
  12. 12.
    G. Terenghi, Peripheral nerve regeneration and neurotrophic factors. J. Anat. 194, 1–14 (1999). doi:10.1046/j.1469-7580.1999.19410001.x PubMedCrossRefGoogle Scholar
  13. 13.
    K. Rezwan, Q.Z. Chen, J.J. Blaker, A.R. Boccaccini, Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27(18), 3413–3431 (2006). doi:10.1016/j.biomaterials.2006.01.039 PubMedCrossRefGoogle Scholar
  14. 14.
    G.R. Evans, K. Brandt, S. Katz, P. Chauvin, L. Otto, M. Bogle, B. Wang, R.K. Meszlenyi, L. Lu, A.G. Mikos, C.W. Patrick Jr, Bioactive poly (l-lactic acid) conduits seed with Schwann cells for peripheral nerve regeneration. Biomaterials 23(3), 841–848 (2002). doi:10.1016/S0142-9612(01)00190-9 PubMedCrossRefGoogle Scholar
  15. 15.
    B. Schlosshauer, E. Muller, B. Schroder, H. Planck, H.W. Muller, Rat Schwann cells in bioresorbable nerve guides to promote and accelerate axonal regeneration. Brain Res. 963(1–2), 321–326 (2003). doi:10.1016/S0006-8993(02)03930-6 PubMedCrossRefGoogle Scholar
  16. 16.
    N.N. Aldini, G. Perego, G.D. Cella, M.C. Maltarello, M. Fini, M. Rocca, R. Giardino, Effectiveness of a bioabsorbable conduit in the repair of peripheral nerves. Biomaterials 17(10), 959–962 (1996). doi:10.1016/0142-9612(96)84669-2 CrossRefGoogle Scholar
  17. 17.
    J.P. Brockes, K.L. Fields, M.C. Raff, Studies on culture rat Schwann cell. I. Establishment of purified populations from cultures of peripheral nerve. Brain Res. 165(1), 105–128 (1979). doi:10.1016/0006-8993(79)90048-9 PubMedCrossRefGoogle Scholar
  18. 18.
    J.G. Assouline, E.P. Bosch, R. Lim, Purification of rat Schwann cells from cultures of peripheral nerve: an immunoselective method using surfaces coated with anti-immunoglobulin antibodies. Brain Res. 277(2), 389–392 (1983). doi:10.1016/0006-8993(83)90953-8 PubMedCrossRefGoogle Scholar
  19. 19.
    J.D. Guest, A. Rao, L. Olson, M.B. Bunge, R.P. Bunge, The ability of human Schwann cell grafts to promote regeneration in the transected nude rat spinal cord. Exp. Neurol. 148(2), 502–522 (1997). doi:10.1006/exnr.1997.6693 PubMedCrossRefGoogle Scholar
  20. 20.
    C.V. Borlongan, S.J. Skinner, M. Geaney, A.V. Vasconcellos, R.B. Elliott, D.F. Emerich, Intracerebral transplantation of porcine choroid plexus provides structural and functional neuroprotection in a rodent model of stroke. Stroke 35(9), 2206–2210 (2004). doi:10.1161/01.STR.0000138954.25825.0b PubMedCrossRefGoogle Scholar
  21. 21.
    A. Wennersten, S. Holmin, F. Al Nimer, X. Meijer, L.U. Wahlberg, T. Mathiesen, Sustained survival of xenografted human neural stem/progenitor cells in experimental brain trauma despite discontinuation of immunosuppression. Exp. Neurol. 199(2), 339–347 (2006). doi:10.1016/j.expneurol.2005.12.035 PubMedCrossRefGoogle Scholar
  22. 22.
    S. Bunting, L. Di Silvio, S. Deb, S. Hall, Bioresorbable glass fibres facilitate peripheral nerve regeneration. J. Hand. Surg. [Br] 30(3), 242–247 (2005). doi:10.1016/j.jhsb.2004.11.003 Google Scholar
  23. 23.
    Y. Sakai, Y. Matsuyama, K. Takahashi, T. Sato, T. Hattori, S. Nakashima, N. Ishiguro, New artificial nerve conduits made with photocrosslinked hyaluronic acid for peripheral nerve regeneration. Biomed. Mater. Eng. 17(3), 191–197 (2007)PubMedGoogle Scholar
  24. 24.
    P. Sangsanoh, S. Waleetorncheepsawat, O. Suwantong, P. Wutticharoenmongkol, O. Weeranantanapan, B. Chuenjitbuntaworn, P. Cheepsunthorn, P. Pavasant, P. Supaphol, In vitro biocompatibility of schwann cells on surfaces of biocompatible polymeric electrospun fibrous and solution-cast film scaffolds. Biomacromolecules 8(5), 1587–1594 (2007). doi:10.1021/bm061152a PubMedCrossRefGoogle Scholar
  25. 25.
    P.C. Letourneau, Cell-to-substratum adhesion and guidance of axonal elongation. Dev. Biol. 44(1), 92–101 (1975). doi:10.1016/0012-1606(75)90379-6 PubMedCrossRefGoogle Scholar
  26. 26.
    M. Lietz, L. Dreesmann, M. Hoss, S. Oberhoffner, B. Schlosshauer, Neuro tissue engineering of glial nerve guides and the impact of different cell types. Biomaterials 27(8), 1425–1436 (2006). doi:10.1016/j.biomaterials.2005.08.007 PubMedCrossRefGoogle Scholar
  27. 27.
    A. Hurtado, L.D. Moon, V. Maquet, B. Blits, R. Jérôme, M. Oudega, Poly (d, l-lactic acid) macroporous guidance scaffolds seeded with Schwann cells genetically modified to secrete a bi-functional neurotrophin implanted in the completely transected adult rat thoracic spinal cord. Biomaterials 27(3), 430–442 (2006). doi:10.1016/j.biomaterials.2005.07.014 PubMedCrossRefGoogle Scholar
  28. 28.
    C. Miller, H. Shanks, A. Witt, G. Rutkowski, S. Mallapragada, Oriented Schwann cell growth on micropatterned biodegradable polymer substrate. Biomaterials 22(11), 1263–1269 (2001). doi:10.1016/S0142-9612(00)00278-7 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • A. Pierucci
    • 1
  • E. A. R. Duek
    • 2
  • A. L. R. de Oliveira
    • 1
  1. 1.Department of Anatomy, Laboratory of Nerve Regeneration, Institute of BiologyUniversity of Campinas––UNICAMPCampinasBrazil
  2. 2.Department of Materials Engineering, Faculty of Mechanical EngineeringUniversity of Campinas––UNICAMPCampinasBrazil

Personalised recommendations