Cell adhesion and accelerated detachment on the surface of temperature-sensitive chitosan and poly(N-isopropylacrylamide) hydrogels

  • Jinyan Wang
  • Li Chen
  • Yiping Zhao
  • Gang Guo
  • Rui Zhang


A series of temperature-sensitive poly(NIPAAm-co-CSA) hydrogels were synthesized by the copolymerization of acrylic acid-derivatized Chitosan (CSA) and N-isopropylacrylamide (NIPAAm) in aqueous solution. Their swelling properties and L929 cell adhesion and detachment behaviors were studied. It was found that poly(NIPAAm-co-CSA) hydrogels were temperature-sensitive associated with the roles of the component PNIPAAm. Most significantly, poly(NIPAAm-co-CSA) hydrogels exhibited simultaneously good swelling properties. The investigation of L929 cell adhesion and detachment of poly(NIPAAm-co-CSA) hydrogels indicated the cell adhesion and spreading was higher on the surface of poly(NIPAAm-co-CSA) hydrogels than that of PNIPAAm hydrogel at 37°C due to the incorporation of CS, which having excellent cell affinity. Poly(NIPAAm-co-CSA) hydrogels showed more rapid detachment of cell sheet compared to PNIPAAm hydrogel because of the highly hydrophilic and hygroscopic nature of CS chains when reducing the culture temperature from 37°C to 20°C.



This research was financially supported by the National Nature Science Foundation of China (Contract grant number: 20574051), and the Specialized Research Fund for the Doctoral Program of Higher Education (Contract grant number: 20050058001).


  1. 1.
    N. Yamada, T. Okano, H. Sakai, F. Karikusa, Y. Sawasaki, Y. Sakurai, Makromol. Chem. Rapid Commun. 11, 571 (1990). doi: 10.1002/marc.1990.030111109 CrossRefGoogle Scholar
  2. 2.
    T. Okano, N. Yamada, H. Sakai, Y. Sakurai, J. Biomed. Mater. Res. 27(10), 1243 (1993). doi: 10.1002/jbm.820271005 PubMedCrossRefGoogle Scholar
  3. 3.
    M. Heskins, J.E. Guillent, E. James, J. Macromol. Sci. Chem. A2, 441 (1968)Google Scholar
  4. 4.
    Y.H. Bae, T. Okano, S.W. Kim, J. Polym. Sci. Polym. Phys. 28, 923 (1990). doi: 10.1002/polb.1990.090280609 CrossRefGoogle Scholar
  5. 5.
    J.P. Chen, A.S. Hoffman, Biomaterials 11, 631 (1990). doi: 10.1016/0142-9612(90)90020-Q PubMedCrossRefGoogle Scholar
  6. 6.
    Y.G. Takei, T. Aoki, K. Sanui, N. Ogata, T. Okano, Y. Sakurai, Bioconjug. Chem. 4, 34 (1993). doi: 10.1021/bc00019a005 CrossRefGoogle Scholar
  7. 7.
    Y.H. Bae, T. Okano, S.W. Kim, J. Polym. Sci. B Polym. Phys. 28, 923 (1990). doi: 10.1002/polb.1990.090280609 CrossRefGoogle Scholar
  8. 8.
    R. Yoshida, K. Sakai, T. Okano, Y. Sakurai, Adv. Drug Deliv. Rev. 11, 85 (1993). doi: 10.1016/0169-409X(93)90028-3 CrossRefGoogle Scholar
  9. 9.
    T. Okano, Y.H. Bae, S.W. Kim, Temperature responsive controlled drug delivery in Pulsed and self-regulated drug delivery, ed. by J. Kost (CRC Press, Boca Raton FL, 1990), p. 17Google Scholar
  10. 10.
    H.A. Von-Recum, S.W. Kim, A. Kikuchi, M. Okuhara, Y. Sakurai, T. Okano, J. Biomed. Mater. Res. 40, 631 (1998). doi:10.1002/(SICI)1097-4636(19980615)40:4<631::AID-JBM15>3.0.CO;2-IPubMedCrossRefGoogle Scholar
  11. 11.
    H.A. von-Recum, A. Kikuchi, M. Okuhara, Y. Sakurai, T. Okano, S.W. Kim, J. Biomater. Sci. Polym. Ed. 9, 1241 (1998). doi: 10.1163/156856298X00758 PubMedCrossRefGoogle Scholar
  12. 12.
    T. Okano, R. Yoshida, in Biomedical application of polymeric materials, ed. by T. Tsuruta, et al. (CRC Press, Boca Raton, FL, 1993), p. 407Google Scholar
  13. 13.
    Y.G. Takei, T. Aoki, K. Sanui, N. Ogata, Y. Sakurai, T. Okano, Macromolecules 27, 6163 (1994). doi: 10.1021/ma00099a035 CrossRefGoogle Scholar
  14. 14.
    T. Yakushiji, K. Sakai, A. Kikuchi, T. Aoyagi, Y. Sakurai, T. Okano, Langmuir 14, 4657 (1998). doi: 10.1021/la980090+ CrossRefGoogle Scholar
  15. 15.
    Y. Akiyama, A. Kikuchi, M. Yamato, T. Okano, Langmuir 20(13), 5506 (2004). doi: 10.1021/la036139f PubMedCrossRefGoogle Scholar
  16. 16.
    M. Yamato, C. Konno, M. Utsumi, A. Kikuchi, T. Okano, Biomaterials 23(2), 561 (2002). doi: 10.1016/S0142-9612(01)00138-7 PubMedCrossRefGoogle Scholar
  17. 17.
    A. Kikuchi, M. Okuhara, F. Karikusa, Y. Sakurai, T. Okano, J. Biomater. Sci. Polym. Ed. 9(12), 1331 (1998). doi: 10.1163/156856298X00424 PubMedCrossRefGoogle Scholar
  18. 18.
    M. Hirose, O.H. Kwon, M. Yamato, A. Kikuchi, T. Okano, Biomacromolecules 1, 77 (2000). doi: 10.1021/bm0002961 CrossRefGoogle Scholar
  19. 19.
    J.O. Hollinger, G.C. Battison, Clin. Orthop. Relat. Res. 207, 290 (1986)PubMedGoogle Scholar
  20. 20.
    Y. Usami, Y. Okamoto, S. Minami, A. Matsuhashi, Y. Shigemasa, Carbolydr. Polymr. 32, 115 (1997)CrossRefGoogle Scholar
  21. 21.
    A. Miwa, A. Ishibe, M. Nakano, T. Yamahira, S. Itai, S. Jinno, H. Kawahara, Pharm. Res. 15(12), 1844 (1998). doi: 10.1023/A:1011901921995 Google Scholar
  22. 22.
    S.Y. Kim, S.M. Cho, Y.M. Lee, S.J. Kim, J. Appl. Polym. Sci. 78, 1381 (2000). doi:10.1002/1097-4628(20001114)78:7<1381::AID-APP90>3.0.CO;2-MCrossRefGoogle Scholar
  23. 23.
    O.H. Kwon, A. Kikuchi, M. Yamato, T. Okano, Biomaterials 24, 1223 (2003). doi: 10.1016/S0142-9612(02)00469-6 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Jinyan Wang
    • 1
  • Li Chen
    • 1
  • Yiping Zhao
    • 1
  • Gang Guo
    • 2
  • Rui Zhang
    • 2
  1. 1.Tianjin Key Laboratory of Fiber Modification and Functional Fiber, School of Materials Science and Chemical EngineeringTianjin Polytechnic UniversityTianjinChina
  2. 2.Institute of EndocrinologyTianjin Medical UniversityTianjinChina

Personalised recommendations