Fabrication and biological characteristics of β-tricalcium phosphate porous ceramic scaffolds reinforced with calcium phosphate glass

  • S. Cai
  • G. H. Xu
  • X. Z. Yu
  • W. J. Zhang
  • Z. Y. Xiao
  • K. D. Yao
Article

Abstract

The fabrication process, compressive strength and biocompatibility of porous β-tricalcium phosphate (β-TCP) ceramic scaffolds reinforced with 45P2O5–22CaO–25Na2O–8MgO bioglass (β-TCP/BG) were investigated for their suitability as bone engineering materials. Porous β-TCP/BG scaffolds with macropore sizes of 200–500 μm were prepared by coating porous polyurethane template with β-TCP/BG slurry. The β-TCP/BG scaffolds showed interconnected porous structures and exhibited enhanced mechanical properties to those pure β-TCP scaffolds. In order to assess the effects of chemical composition of this bioglass on the behavior of osteoblasts cultured in vitro, porous scaffolds were immersed in simulated body fluid (SBF) for 2 weeks, and original specimens (without soaked in SBF) seeded with MC3T3-E1 were cultured for the same period. The ability of inducing apatite crystals in simulated body fluid and the attachment of osteoblasts were examined. Results suggest that apatite agglomerates are formed on the surface of the β-TCP/BG scaffolds and its Ca/P molar ratio is ~1.42. Controlling the crystallization from the β-TCP/BG matrix could influence the releasing speed of inorganic ions and further adjust the microenvironment of the solution around the β-TCP/BG, which could improve the interaction between osteoblasts and the scaffolds.

References

  1. 1.
    R. Langer, J.P. Vacanti, Science 260, 920 (1993). doi:10.1126/science.8493529 PubMedCrossRefADSGoogle Scholar
  2. 2.
    D.W. Hutmacher, Biomaterials 21, 2529 (2000)PubMedCrossRefGoogle Scholar
  3. 3.
    A.R. Boccaccini, V. Maquet, Compos. Sci. Technol. 63, 2417 (2003). doi:10.1016/S0266-3538(03)00275-6 CrossRefGoogle Scholar
  4. 4.
    D.C. Tancred, A.J. Carr, B.A.O. Mccormack, J. Mater. Sci. Mater. Med. 12, 81 (2001). doi:10.1023/A:1026773522934 PubMedCrossRefGoogle Scholar
  5. 5.
    V.V. Silva, F.S. Lameiras, R.Z. Domingues, Compos. Sci. Technol. 61, 301 (2001). doi:10.1016/S0266-3538(00)00222-0 CrossRefGoogle Scholar
  6. 6.
    W. Suchanel, M. Yashima, M. Kakihana, M. Yoshimura, Biomaterials 17, 1715 (1996). doi:10.1016/0142-9612(96)87652-6 CrossRefGoogle Scholar
  7. 7.
    Y.K. Juna, H.K. Wan, O.K. Kweonb, S.H. Honga, Biomaterials 24, 3731 (2003). doi:10.1016/S0142-9612(03)00248-5 CrossRefGoogle Scholar
  8. 8.
    V. Salih, A. Patel, J.C. Knowles, Biomed. Mater. 2, 11 (2007). doi:10.1088/1748-6041/2/1/003 PubMedCrossRefADSGoogle Scholar
  9. 9.
    T. Kokubo, H.M. Kim, M. Kawashita, Biomaterials 24, 2161 (2003). doi:10.1016/S0142-9612(03)00044-9 PubMedCrossRefGoogle Scholar
  10. 10.
    R. Murugan, S. Ramakrishna, Mater. Lett. 58, 230 (2003). doi:10.1016/S0167-577X(03)00451-8 CrossRefGoogle Scholar
  11. 11.
    T. Matsuno, M. Morita, K. Watanabe, K. Ono, M. Koishi, J. Mater. Sci. Mater. Med. 14, 247 (2003). doi:10.1023/A:1023464115384 CrossRefGoogle Scholar
  12. 12.
    Towler, I.R. Gibson, S.M. Best, J. Mater. Sci. Lett. 19, 2209 (2000). doi:10.1023/A:1006752202731 CrossRefGoogle Scholar
  13. 13.
    V. Salin, G. Georgiou, J.C. Knowles, I. Olsen, Biomaterials 22, 2817 (2001). doi:10.1016/S0142-9612(01)00026-6 CrossRefGoogle Scholar
  14. 14.
    S. Langstaff, M. Sayer, T.J.N. Smith, S.M. Pugh, Biomaterials 22, 135 (2001). doi:10.1016/S0142-9612(00)00139-3 PubMedCrossRefGoogle Scholar
  15. 15.
    G. Goller, H. Demirkiran, F.N. Oktar, E. Demirkesen, Ceram. Int. 29, 72 (2003)CrossRefGoogle Scholar
  16. 16.
    O. Peital, E.D. Zanotto, L.L. Hench, J. Non-Cryst. Solids 292, 11 (2001)Google Scholar
  17. 17.
    M. Nagase, Y. Abe, M. Chigira, E. Udagawa, Biomaterials 13, 172 (1992)PubMedCrossRefGoogle Scholar
  18. 18.
    M.H. Prado Da Silva, A.F. Lemos, I.R. Gibson, J.M.F. Ferreira, J. Non-Cryst. Solids 304, 286 (2002). doi:10.1016/S0022-3093(02)01036-0 CrossRefADSGoogle Scholar
  19. 19.
    T. Kasuga, M. Sawada, M. Nogami, Y. Abe, Biomaterials 20, 1415 (1999). doi:10.1016/S0142-9612(99)00047-2 PubMedCrossRefGoogle Scholar
  20. 20.
    H.P. Yuan, J.D. De Bruijn, Y.B. Li, J. Qfeng, Z.J. Yang, K. De Groot et al., J. Mater. Sci. Mater. Med. 12, 7 (2001). doi:10.1023/A:1026792615665 PubMedCrossRefGoogle Scholar
  21. 21.
    K. Franks, I. Abrahams, G. Georgiou, J.C. Knowles, Biomaterials 22, 497 (2001). doi:10.1016/S0142-9612(00)00207-6 PubMedCrossRefGoogle Scholar
  22. 22.
    S.H. Rehee, Biomaterials 23, 1147 (2002). doi:10.1016/S0142-9612(01)00229-0 CrossRefGoogle Scholar
  23. 23.
    E. Esposoto, R. Cortesi, C. Nastruzzi, Biomaterials 20, 2009 (1995)Google Scholar
  24. 24.
    Y. Otani, Y. Tabata, Y. Ikada, Biomaterials 19, 2091 (1998). doi:10.1016/S0142-9612(98)00121-5 PubMedCrossRefGoogle Scholar
  25. 25.
    J. Ando, S. Matsuno, Bull. Chem. Soc. Jpn. 41, 342 (1968). doi:10.1246/bcsj.41.342 CrossRefGoogle Scholar
  26. 26.
    M. Jarco, R.L. Salabury, M.B. Thomas, R.H. Diremus, J. Mater. Sci. 14, 142 (1979). doi:10.1007/BF01028337 CrossRefGoogle Scholar
  27. 27.
    N.C. Blumenthal, Clin. Orthop. Relat. Res. 248, 279 (1989)Google Scholar
  28. 28.
    R.L. Xin, Y. Leng, J.Y. Chen, Q.Y. Zhang, Biomaterials 26, 6477 (2005). doi:10.1016/j.biomaterials.2005.04.028 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • S. Cai
    • 1
  • G. H. Xu
    • 2
  • X. Z. Yu
    • 1
  • W. J. Zhang
    • 1
  • Z. Y. Xiao
    • 1
  • K. D. Yao
    • 3
  1. 1.Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of EducationTianjin UniversityTianjinPeople’s Republic of China
  2. 2.Shanghai Changzheng HospitalShanghaiPeople’s Republic of China
  3. 3.Research Institute of Polymeric MaterialsTianjinPeople’s Republic of China

Personalised recommendations