Synthesis, neutralization and blocking procedures of organic/inorganic hybrid scaffolds for bone tissue engineering applications

  • Hermes S. Costa
  • Edel F. B. Stancioli
  • Marivalda M. Pereira
  • Rodrigo L. Oréfice
  • Herman S. Mansur


Bioactive glasses (BaG) can bind to human bone tissues and have been used in many biomedical applications for the last 30 years. However they usually are weak and brittle. On the other hand, composites that combine polymers and BaG are of particular interest, since they often show an excellent balance between stiffness and toughness. Bioactive glass-poly(vinyl alcohol) foams to be used in tissue engineering applications were previously developed by our group, using the sol–gel route. Since bioactive glass-polymer composite derived from the sol–gel process cannot be submitted to thermal treatments at high temperatures (above 400°C), they usually have unreacted species that can cause cytotoxicity. This work reports a technique for stabilizing the sol–gel derived bioactive glass/poly(vinyl alcohol) hybrids by using glutaraldehyde (GA), NH4OH solutions and a blocking solution containing bovine serum albumin. PVA/BaG/GA hybrids were characterized by Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM/EDX) analyses. Moreover, MTT (3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide) biocompatibility and cytotoxicity assays were also conducted. The hybrids exhibited pore size varying from 80 to 820 μm. After treatments, no major changes in the pore structure were observed and high levels of cell viability were obtained.



The authors acknowledge National Council for Scientific and Technological Development (CNPq) and State of Minas Gerais Research Foundation (FAPEMIG) for financial support on this project.


  1. 1.
    R.A. Stile, K.E. Healy, Biomacromolecules 2, 185 (2001). doi: 10.1021/bm0000945 PubMedCrossRefGoogle Scholar
  2. 2.
    D.W. Hutmacher, Biomaterials 21, 2529 (2000). doi: 10.1016/S0142-9612(00)00121-6 PubMedCrossRefGoogle Scholar
  3. 3.
    K.J. Burg, S. Porter, J.F. Kellam, Biomaterials 21, 2347 (2000). doi: 10.1016/S0142-9612(00)00102-2 PubMedCrossRefGoogle Scholar
  4. 4.
    L.L. Hench, J. Am. Ceram. Soc. 74, 1487 (1991). doi: 10.1111/j.1151-2916.1991.tb07132.x CrossRefGoogle Scholar
  5. 5.
    L.S. Liu, A.Y. Thompson, M.A. Heidaran, J.W. Poser, R.C. Spiro, Biomaterials 20, 1097 (1999). doi: 10.1016/S0142-9612(99)00006-X PubMedCrossRefGoogle Scholar
  6. 6.
    H.M.T.U. Herath, L. DiSilvio, G. Evans Jr, J. Appl. Biomater. Biomech. 3, 192 (2005)Google Scholar
  7. 7.
    J.L. Drury, D.J. Mooney, Biomaterials 24, 4337 (2003). doi: 10.1016/S0142-9612(03)00340-5 PubMedCrossRefGoogle Scholar
  8. 8.
    Y. Kaneo, S. Hashihama, A. Kakinoki, T. Tanaka, T. Nakano, Y. Ikeda, Drug. Metab. Pharmacokinet. 20, 435 (2005) Google Scholar
  9. 9.
    V. Karageorgiou, D. Kaplan, Biomaterials 26, 5474 (2005). doi: 10.1016/j.biomaterials.2005.02.002 PubMedCrossRefGoogle Scholar
  10. 10.
    W. Lin, Y. Ching, G. Da, M.C. Yang, Colloid. Surf. B Biointerface. 47, 43 (2006). doi: 10.1016/j.colsurfb.2005.11.013 PubMedCrossRefGoogle Scholar
  11. 11.
    T. Yamaoka, Y. Tabata, Y. Ikada, J. Pharm. Pharmacol. 47, 479 (1995)PubMedGoogle Scholar
  12. 12.
    K.S. Soppimath, A.R. Kulkarni, M. Aminabhavi, J. Biomater. Sci. Polym. 11, 27 (2000). doi: 10.1163/156856200743472 CrossRefGoogle Scholar
  13. 13.
    R.J. Jones, L.M. Ehrenfried, L.L. Hench, Biomaterials 27, 964 (2005). doi: 10.1016/j.biomaterials.2005.07.017 PubMedCrossRefGoogle Scholar
  14. 14.
    H.S. Mansur, R.L. Oréfice, A.A.P. Mansur, Polymer (Guildf) 45, 7193 (2004). doi: 10.1016/j.polymer.2004.08.036 CrossRefGoogle Scholar
  15. 15.
    A. Bandyopadhyay, M. Sarkar, A.K. Bhowmick, J. Mater. Sci. 41, 5981 (2006). doi: 10.1007/s10853-006-0254-x CrossRefADSGoogle Scholar
  16. 16.
    T.V. Thamaraiselvi, S. Rajeswari, Trends Biomater. Artif. Organs 18, 9 (2004)Google Scholar
  17. 17.
    E. Chielline, A. Corti, S. D’antone, R. Solano, Prog. Polym. Sci. 28, 963 (2003). doi: 10.1016/S0079-6700(02)00149-1 CrossRefGoogle Scholar
  18. 18.
    H. Li, R. Du, J. Chang, J. Biomater. Appl. 20, 137 (2005). doi: 10.1177/0885328205049472 PubMedCrossRefGoogle Scholar
  19. 19.
    H.S. Mansur, A.A.P. Mansur, Solid State Phenom. 121, 855 (2007)CrossRefGoogle Scholar
  20. 20.
    H.S. Costa, G.I. Andrade, E.F.B. Stancioli, M.M. Pereira, R.L. Oréfice, H.S. Mansur, J. Mater. Sci.: Mater. Med. 43, 494 (2007)ADSGoogle Scholar
  21. 21.
    M.M. Pereira, J.R. Jones, R.L. Oréfice, L.L. Hench, J. Mater. Sci.: Mater. Med. 16, 1045 (2005). doi: 10.1007/s10856-005-4758-8 CrossRefGoogle Scholar
  22. 22.
    L. Zhang, P. Yu, Y. Luo, Separ. Purif. Tech. 52, 77 (2006). doi: 10.1016/j.seppur.2006.03.020 CrossRefGoogle Scholar
  23. 23.
    S.A. Kukushkin, A.V. Osipov, Prog. Surf. Sci. 51, 1 (1996). doi: 10.1016/0079-6816(96)82931-5 CrossRefGoogle Scholar
  24. 24.
    H.S. Mansur, H.S. Costa, Chem. Eng. J. 137, 72 (2007). doi: 10.1016/j.cej.2007.09.036 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Hermes S. Costa
    • 1
  • Edel F. B. Stancioli
    • 2
  • Marivalda M. Pereira
    • 1
  • Rodrigo L. Oréfice
    • 1
  • Herman S. Mansur
    • 1
  1. 1.Department of Metallurgical and Materials Engineering, Laboratory of Biomaterials and Tissue EngineeringFederal University of Minas GeraisBelo HorizonteBrazil
  2. 2.Department of Microbiology, Institute of Biological SciencesFederal University of Minas GeraisBelo HorizonteBrazil

Personalised recommendations