Advertisement

Nanoscale viscoelastic properties of an aligned collagen scaffold

  • Bill Chaudhry
  • Holly Ashton
  • Arif Muhamed
  • Michael Yost
  • Steve Bull
  • Daniel Frankel
Article

Abstract

Localised mechanical properties for aligned collagen scaffolds derived from Type 1 collagen were determined by application of nanoindentation based techniques. It was possible to measure the modulus and hardness with nanometre control over the depth of penetration and quasi-static testing under displacement control yielded average modulus values ranging from 1.71 GPa to 3.31 GPa; a narrower range of values than obtained by other methods. Hardness values of 222 MPa to 256 MPa were recorded and showed little scatter, highlighting the potential of nanoindentation hardness values as a reproducible and accurate measure of soft material properties. Open loop Load-displacement curves for the collagen exhibited the expected shapes for a viscoelastic material and it was thus possible to apply dynamic stiffness measurement at the nano scale. As well as determining the storage modulus (0.71 GPa) and the loss modulus (0.40 GPa) at the sub-micron length and nano depth resolution it was also possible to discriminate between surface and bulk readings allowing surface effects to be discarded if necessary. In addition to being a more accurate indentation method than atomic force microscopy, the localised dynamic mechanical properties of collagen were measured for the first time. These results demonstrate that this nanoindentation technique can serve as a powerful tool for the characterisation of collagen based biomaterials that are used as scaffolds for a variety of engineered tissues, such as artificial skin, skeletal muscle, heart valves and neuroregeneration guides.

Keywords

Atomic Force Microscopy Storage Modulus Dynamic Mechanical Analysis Collagen Scaffold Sodium Hydrogen Carbonate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

D.J. Frankel is supported by a Research Councils UK (RCUK) fellowship.

References

  1. 1.
    Q. Lu, K. Ganesan, D.T. Simionescu, N.R. Vyavahare, Biomaterials 25, 5227 (2004). doi: 10.1016/j.biomaterials.2003.12.019 PubMedCrossRefGoogle Scholar
  2. 2.
    P.M. Taylor, A.E.G. Cassl, M.H. Yacoub, Prog. Pediatr. Cardiol. 21, 219 (2006). doi: 10.1016/j.ppedcard.2005.11.010 CrossRefGoogle Scholar
  3. 3.
    J.T. Lu, C.J. Lee, S.F. Bent, H.A. Fishman, E.E. Sabelman, Biomaterials 28, 1486 (2007). doi: 10.1016/j.biomaterials.2006.11.023 PubMedCrossRefGoogle Scholar
  4. 4.
    M.T. Valarmathi, M.J. Yost, R.L. Goodwin, J.D. Potts, Tissue Eng: Part A 14 (2008)Google Scholar
  5. 5.
    R.G. Jansen, T.H. van Kuppervelt, W.F. Daamen, A.M. Kuijpers-Jagtman, W. Von den Hoff, Arch. Oral. Biol. 53, 376 (2008)PubMedGoogle Scholar
  6. 6.
    V. Thomas, X. Zhang, S.A. Catledge, Y.K. Vohra, Biomed. Mater. 2, 224 (2007). doi: 10.1088/1748-6041/2/4/004 PubMedCrossRefADSGoogle Scholar
  7. 7.
    E. Sachlos, N. Reis, C. Ainsley, B. Derby, J.T. Czernuszka, Biomaterials 24, 1487 (2003). doi: 10.1016/S0142-9612(02)00528-8 PubMedCrossRefGoogle Scholar
  8. 8.
    L. Buttafoco, N.G. Kolkman, P. Engbers-Buijtenhuijs, A.A. Poot, P.J. Dijkstra, I. Vermes, Biomaterials 27, 724 (2006). doi: 10.1016/j.biomaterials.2005.06.024 PubMedCrossRefGoogle Scholar
  9. 9.
    M. Rafiuddin Ahmed, U. Venkateshwarlu, R. Jayakumar, Biomaterials 25, 2585 (2004). doi: 10.1016/j.biomaterials.2003.09.075 PubMedCrossRefGoogle Scholar
  10. 10.
    E. Gentleman, A.N. Lay, D.A. Dickerson, E.A. Nauman, G.A. Livesay, K.C. Dee, Biomaterials 24, 3805 (2003). doi: 10.1016/S0142-9612(03)00206-0 PubMedCrossRefGoogle Scholar
  11. 11.
    X. Wang, X. Li, M.J. Yost, J. Biomed. Res. Part A 74A, 263 (2005). doi: 10.1002/jbm.a.30387 CrossRefGoogle Scholar
  12. 12.
    M.P.E. Wenger, L. Bozec, M.A. Horton, P. Mesquida, Biophys. J. 93, 1255 (2007). doi: 10.1529/biophysj.106.103192 PubMedCrossRefADSGoogle Scholar
  13. 13.
    L. Yang, C.F.C. Fitie, K.O. Van Der Werf, M.L. Bennink, P.J. Dijkstra, J. Feijen, Biomaterials 29, 955 (2008). doi: 10.1016/j.biomaterials.2007.10.058 PubMedCrossRefGoogle Scholar
  14. 14.
    L. Yang, K.O. Van der Werf, B.F.J.M. Koopman, V. Subramaniam, M.L. Bennink, P.J. Dijkstra, J. Biomed. Res. Part A 82A, 160 (2007). doi: 10.1002/jbm.a.31127 CrossRefGoogle Scholar
  15. 15.
    G. Forgacs, S.A. Newman, B. Hinner, C.W. Maier, E. Sackmann, Biophys. J. 84, 1272 (2003)PubMedCrossRefADSGoogle Scholar
  16. 16.
    P. Netti, A. D’amore, D. Ronca, L. Ambrosio, L. Nicolais, J. Mater. Sci. Mater. Med. 7, 525 (1996). doi: 10.1007/BF00122175 CrossRefGoogle Scholar
  17. 17.
    L. Bozec, M. Horton, Biophys. J. 88, 4223 (2005). doi: 10.1529/biophysj.104.055228 PubMedCrossRefADSGoogle Scholar
  18. 18.
    M.J. Buehler, Proc. Natl. Acad. Sci. USA 103, 12285 (2006). doi: 10.1073/pnas.0603216103 PubMedCrossRefADSGoogle Scholar
  19. 19.
    A. Chakravartula, K. Komvopoulos, Appl. Phys. Lett. 88, 131901 (2006). doi: 10.1063/1.2189156 CrossRefADSGoogle Scholar
  20. 20.
    S.J. Bull, J. Appl. Phys. D 38, R393 (2005). doi: 10.1088/0022-3727/38/24/R01 CrossRefADSGoogle Scholar
  21. 21.
    N. Bouaita, S.J. Bull, J. Fernandez Palacio, J.R. White, Polym. Eng. Sci. 46, 1160 (2006)CrossRefGoogle Scholar
  22. 22.
    H.J. Evans, J.K. Sweet, R.L. Price, M. Yost, R.L. Goodwin, Am. J. Physiol. Heart Circ. Physiol. 285, H570 (2003)PubMedGoogle Scholar
  23. 23.
    W.C. Oliver, G.M. Pharr, J. Mater. Res. 7, 1564 (1992). doi: 10.1557/JMR.1992.1564 CrossRefADSGoogle Scholar
  24. 24.
    N.M. Ntim, A.K. Bembey, V.L. Ferguson, A.J. Bushby, Mater. Res. Soc. Symp. Proc. 898, L05 (2006)Google Scholar
  25. 25.
    C.A. Clifford, M.P. Seah, Appl. Surf. Sci. 252, 1915 (2005). doi: 10.1016/j.apsusc.2005.08.090 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Bill Chaudhry
    • 1
  • Holly Ashton
    • 2
  • Arif Muhamed
    • 2
  • Michael Yost
    • 3
  • Steve Bull
    • 2
  • Daniel Frankel
    • 2
  1. 1.Institute of Human GeneticsNewcastle UniversityNewcastle upon TyneUK
  2. 2.School of Chemical Engineering and Advanced MaterialsNewcastle UniversityNewcastle upon TyneUK
  3. 3.Department of Surgery, School of MedicineUniversity of South CarolinaColumbiaUSA

Personalised recommendations