Study on antibacterial effect of 45S5 Bioglass®

  • Sheng Hu
  • Jiang Chang
  • Mingqiu Liu
  • Congqin Ning


Previous studies have shown that bioactive glasses possessed antibacterial effect on common bacteria due to the high aqueous pH value caused by the bioactive glass dissolution. In the present study, the efficiency of the antibacterial effect of 45S5 Bioglass® (45S5 BAG) against S. aureus, S. epidermidis and E. coli and its mechanism were investigated. The results showed that 45S5 BAG exhibited a strong antibacterial effect against the bacteria, and the sensitivity of gram-negative and gram-positive bacteria to Bioglass was different. Furthermore, a dose-dependent bacterial adhesion on 45S5 BAG particles and the formation of needle-like Bioglass debris were observed, which resulted in the damage of cell walls and inactivation of bacteria. The results suggested that both the high pH and bioglass debris on the surface of bacteria may be the possible mechanisms of the antibacterial effect of 45S5 BAG particulates.


Antibacterial Activity Antibacterial Effect Bioactive Glass Bacterial Adhesion Vortex Mixer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was supported by China Postdoctoral Science Foundation (20060400679), Science and Technology Commission of Shanghai Municipality (Grant No.: 07DZ05012) and Project supported by Funds of the Chinese Academy of Sciences for Key Topics in Innovation Engineering (Grant No. KGCX2-YW-207). The authors would like to show appreciations to Mr. Wanyin Zhai, Mr. Weiming Gu and Mr. Kaili Lin for their kind discussions.


  1. 1.
    L.L. Hench, J. Mater. Sci. Mater. Med. 17, 967 (2006). doi: 10.1007/s10856-006-0432-z PubMedCrossRefGoogle Scholar
  2. 2.
    S. Verrier, J.J. Blaker, V. Maquet, L.L. Hench, A.R. Boccaccini, Biomaterials 25, 3013 (2004). doi: 10.1016/j.biomaterials.2003.09.081 PubMedCrossRefGoogle Scholar
  3. 3.
    S.P. Bendall, M. Gaies, C. Frondoza, R.H. Jinnah, D.S. Hungerford, J. Biomed. Mater. Res. 41, 392 (1998). doi:10.1002/(SICI)1097-4636(19980905)41:3<392::AID-JBM8>3.0.CO;2-7PubMedCrossRefGoogle Scholar
  4. 4.
    P. Stoor, E. Soderling, J.I. Salonen, Acta Odontol. Scand. 56, 161 (1998). doi: 10.1080/000163598422901 PubMedCrossRefGoogle Scholar
  5. 5.
    H. Yli-urpo, T. Narhi, E. Soderling, Acta Odontol. Scand. 61, 241 (2003). doi: 10.1080/00016350310004719 PubMedCrossRefGoogle Scholar
  6. 6.
    E. Munukka, O. Lepparanta, M. Korkeamaki, M. Vaahtio, T. Peltola, D. Zhang et al., J. Mater. Sci. Mater. Med. 19, 27 (2008). doi: 10.1007/s10856-007-3143-1 PubMedCrossRefGoogle Scholar
  7. 7.
    O. Lepparanta, M. Vaahtio, T. Peltola, D. Zhang, L. Hupa, M. Hupa et al., J. Mater. Sci. Mater. Med. 19, 547 (2008). doi: 10.1007/s10856-007-3018-5 PubMedCrossRefGoogle Scholar
  8. 8.
    I. Allan, H. Newman, M. Wilson, Biomaterials 22, 1683 (2001). doi: 10.1016/S0142-9612(00)00330-6 PubMedCrossRefGoogle Scholar
  9. 9.
    I. Allan, H. Newman, M. Wilson, Clin. Oral Implants Res. 13, 53 (2002). doi: 10.1034/j.1600-0501.2002.130106.x PubMedCrossRefGoogle Scholar
  10. 10.
    J. Pratten, S.N. Nazhat, J.J. Blaker, A.R. Boccaccini, J. Biomater. Appl. 19, 47 (2004). doi: 10.1177/0885328204043200 PubMedCrossRefGoogle Scholar
  11. 11.
    L.L. Hench, J. Am. Ceram. Soc. 81, 1705 (1998)Google Scholar
  12. 12.
    K.F. Chah, C.A. Eze, C.E. Emuelosi, C.O. Esimone, J. Ethnopharmacol. 104, 164 (2006). doi: 10.1016/j.jep.2005.08.070 PubMedCrossRefGoogle Scholar
  13. 13.
    M. Bellantone, N.J. Coleman, L.L. Hench, J. Biomed. Mater. Res. 51, 484 (2000). doi:10.1002/1097-4636(20000905)51:3<484::AID-JBM24>3.0.CO;2-4PubMedCrossRefGoogle Scholar
  14. 14.
    Z. Popovic, M. Otter, G. Calzaferri, C.L. De, Angew. Chem. Int. Ed. Engl. 46, 6188 (2007). doi: 10.1002/anie.200701019 PubMedCrossRefGoogle Scholar
  15. 15.
    T.E. Davis, D.D. Fuller, J. Clin. Microbiol. 29, 2193 (1991)PubMedGoogle Scholar
  16. 16.
    A. Jacobs, F. Lafolie, J.M. Herry, M. Debroux, Colloids Surf. B Biointerfaces 59, 35 (2007). doi: 10.1016/j.colsurfb.2007.04.008 PubMedCrossRefGoogle Scholar
  17. 17.
    N. Ohmura, K. Kitamura, H. Saiki, Appl. Environ. Microbiol. 59, 4044 (1993)PubMedGoogle Scholar
  18. 18.
    L. Sabath, M. Finland, J. Bacteriol. 85, 314 (1963)PubMedGoogle Scholar
  19. 19.
    G.J. Miraglia, H.I. Basch, Appl. Microbiol. 15, 566 (1967)PubMedGoogle Scholar
  20. 20.
    J. Rundegren, T. Sjodin, L. Petersson, E. Hansson, I. Jonsson, Oral Microbiol. Immunol. 10, 102 (1995). doi: 10.1111/j.1399-302X.1995.tb00127.x PubMedCrossRefGoogle Scholar
  21. 21.
    S. Hu, Y.H. Yan, Y.F. Wang, X.Y. Cao, S.P. Li, J. Wuhan Univ. Technol. 20, 35 (2005). Material science editionGoogle Scholar
  22. 22.
    S. Hu, S.P. Li, Y.H. Yan, Y.F. Wang, X.Y. Cao, J. Wuhan Univ. Technol. 20, 13 (2005). Material science editionGoogle Scholar
  23. 23.
    D. Zhang, M. Hupa, L. Hupa, Acta Biomater. 4(5), 1498 (2008). doi: 10.1016/j.actbio.2008.04.007 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Sheng Hu
    • 1
  • Jiang Chang
    • 1
  • Mingqiu Liu
    • 2
  • Congqin Ning
    • 1
  1. 1.Biomaterials and Tissue Engineering Research CenterShanghai Institute of Ceramics, Chinese Academy of SciencesShanghaiChina
  2. 2.State Key Laboratory of Genetic Engineering, Institute of GeneticsSchool of Life Science, Fudan UniversityShanghaiChina

Personalised recommendations