Advertisement

An investigation of microbial adhesion to natural and synthetic polysaccharide-based films and its relationship with the surface energy components

  • Polina Prokopovich
  • Stefano PerniEmail author
Article

Abstract

In recent years, polysaccharide-based films have been developed for many applications. Some of these are in the pharmaceutical industry, where the adhesion of microorganisms to surfaces is a concern. After adhesion of a microorganism to a solid surface has taken place, the subsequent biofilm formed can act as a vehicle for spreading infections. The aim of this study is to compare the bacterial adhesion of E. coli and S. aureus from a contaminated solid model (Tryptone Soya Agar) to a range of polysaccharide-based films. These polysaccharide-based films consist of different natural starches (potato, cassava, wheat, pea and rice) and synthetic polymers hydroxyl-propyl cellulose (HPC) and carboxyl methyl cellulose (CMC)). The surface energy parameters of the films were calculated from the contact angle measurements by the sessile drop method. Apolar and polar liquids (water, formamide and hexadecane) and the Lifshitz-Van der Waals/acid-base (LW/AB) approach were used according to the method of Van Oss, Chaundhury and Good. The surface properties of the films were also correlated to the microbial adhesion. This indicated that, for both E. coli and S. aureus, the surface roughness did not affect the microbial adhesion. Only \( \gamma _{\text{S}}^{\text{AB}} \) had any correlation with the microbial adhesion and \( \gamma _{\text{S}}^{\text{LW}} \) was almost constant for all the various polysaccharide films tested. In addition, the electron—donor properties of the materials, exhibited via \( \gamma _{\text{S}}^{ + } \), were positively correlated with the adhesion of S. aureus but not with E. coli. This was in agreement with the results of the MATS (Microbial Adhesion To Solvents) test performed on the two bacteria. This revealed that only S. aureus presented an electron—acceptor characteristic.

Keywords

Contact Angle Cassava Amylose Surface Free Energy Hexadecane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors thank Dr. Richard Toon for his useful suggestions and helpful comments.

References

  1. 1.
    M.A. Garcia, M.N. Martino, N.E. Zaritzky, Starch 52, 118–124 (2000). doi :10.1002/1521-379X(200006)52:4<118::AID-STAR118>3.0.CO;2-0.CrossRefGoogle Scholar
  2. 2.
    T.D. Phan, F. Debeaufort, D. Luu, A. Voilley, J. Agric. Food. Chem. 53, 973–981 (2005). doi: 10.1021/jf040309s PubMedCrossRefGoogle Scholar
  3. 3.
    F.D.S. Larotonda, K.N. Matsui, V. Soldi, J.B. Laurindo, Braz. Arch. Biol. Technol. 47, 477–484 (2004)CrossRefGoogle Scholar
  4. 4.
    Z. Liu, J.H. Han, J. Food Sci. 70, E31–E36 (2005)CrossRefGoogle Scholar
  5. 5.
    H.J. Bae, D.S. Cha, W.S. Whiteside, H.J. Park, Food Chem. 106, 96–105 (2008). doi: 10.1016/j.foodchem.2007.05.070 CrossRefGoogle Scholar
  6. 6.
    I. Yakimets, S.S. Paes, N. Wellner, A.C. Smith, R.H. Wilson, J.R. Mitchell, Biomacromolecules 8, 1710–1722 (2007). doi: 10.1021/bm070050x PubMedCrossRefGoogle Scholar
  7. 7.
    S.Z. Vina, A. Mugride, M.A. Garcia, R.M. Ferrevra, M.N. Martino, A.R. Chaves et al., Food Chem. 103, 701–709 (2007). doi: 10.1016/j.foodchem.2006.09.010 CrossRefGoogle Scholar
  8. 8.
    S. Zivanovic, S. Chi, A.F. Draughon, Food Microbiol. Saf. 70(1), M45–M51 (2005)Google Scholar
  9. 9.
    P.S. Mead, L. Slutsker, V. Dietz, L.F. McCaig, J.S. Bresee, C. Shapiro et al., Emerg. Infect. Dis. 5, 607–625 (1999)PubMedCrossRefGoogle Scholar
  10. 10.
    L. Ferrières, V. Hancock, P. Klemm, FEMS Immunol. Med. Microbiol. 51, 212–219 (2007). doi: 10.1111/j.1574-695X.2007.00296.x PubMedCrossRefGoogle Scholar
  11. 11.
    A. Juan-Torres, S. Harbarth, Int. J. Antimicrob. Agents 30S, S80–S87 (2007). doi: 10.1016/j.ijantimicag.2007.06.021 CrossRefGoogle Scholar
  12. 12.
    J.W. Costerton, Z. Lewandowski, D.E. Caldwell, D.R. Korber, H.M. Lappin-Scott, Annu. Rev. Microbiol. 49, 711–745 (1995). doi: 10.1146/annurev.mi.49.100195.003431 PubMedCrossRefGoogle Scholar
  13. 13.
    D.E. Norwood, A. Gilmour, J. Appl. Microbiol. 88, 512–520 (2000). doi: 10.1046/j.1365-2672.2000.00990.x PubMedCrossRefGoogle Scholar
  14. 14.
    J. Kives, B. Orgaz, C. SanJose, Colloids Surf. B Biointerfaces 52, 123–127 (2006). doi: 10.1016/j.colsurfb.2006.04.018 PubMedCrossRefGoogle Scholar
  15. 15.
    G. Midelet, B. Carpenter, Appl. Environ. Microbiol. 68, 4015–4024 (2002). doi: 10.1128/AEM.68.8.4015-4024.2002 PubMedCrossRefGoogle Scholar
  16. 16.
    R. Montville, D.W. Schaffner, Appl. Environ. Microbiol. 69, 7188–7193 (2003). doi: 10.1128/AEM.69.12.7188-7193.2003 PubMedCrossRefGoogle Scholar
  17. 17.
    P. Luber, S. Brynestad, D. Topsch, K. Scherer, E. Bartelt, Appl. Environ. Microbiol. 72, 66–70 (2006). doi: 10.1128/AEM.72.1.66-70.2006 PubMedCrossRefGoogle Scholar
  18. 18.
    R. Oliveira, Exp. Therm. Fluid Sci. 14, 316–322 (1997). doi: 10.1016/S0894-1777(96)00134-3 CrossRefMathSciNetGoogle Scholar
  19. 19.
    X.D. Huang, K. Yao, H. Zhang, X.J. Huang, Z.K. Xu, Clin. Exp. Ophthalmol. 35, 462–467 (2007). doi: 10.1111/j.1442-9071.2007.01516.x CrossRefGoogle Scholar
  20. 20.
    H.K. No, S.P. Meyers, W. Prinyawiwatkul, Z. Xu, J. Food Sci. 72, R87–R100 (2007). doi: 10.1111/j.1750-3841.2007.00383.x PubMedCrossRefGoogle Scholar
  21. 21.
    D.R. Absolom, F.V. Lamberti, Z. Policova, W. Zingg, C.J. Van Oss, A.W. Neumann, Appl. Environ. Microbiol. 46, 90–97 (1983)PubMedGoogle Scholar
  22. 22.
    M. Hermansson, Colloids Surf. B Biointerfaces 14, 105–119 (1999). doi: 10.1016/S0927-7765(99)00029-6 CrossRefGoogle Scholar
  23. 23.
    I.S. Arvanitoyannis, A. Nakayama, S. Aiba, Carbohydr. Polym. 37, 371–382 (1998). doi: 10.1016/S0144-8617(98)00083-6 CrossRefGoogle Scholar
  24. 24.
    N. Gontard, S. Guilbert, J. Cuq, J. Food Sci. 58(1), 206–211 (1993). doi: 10.1111/j.1365-2621.1993.tb03246.x CrossRefGoogle Scholar
  25. 25.
    J.W. Lawton, Carbohydr. Polym. 29, 203–208 (1996). doi: 10.1016/0144-8617(96)00028-8 CrossRefGoogle Scholar
  26. 26.
    A.M. Durango, N.F.F. Soares, N.J. Andrade, Food Contr. 17, 336–341 (2006). doi: 10.1016/j.foodcont.2004.10.024 CrossRefGoogle Scholar
  27. 27.
    K. Prochaska, P. Kedziora, J. Le Thanh, G. Lewandowicz, Colloids Surf. B Biointerfaces 60, 187–194 (2007). doi: 10.1016/j.colsurfb.2007.06.005 PubMedCrossRefGoogle Scholar
  28. 28.
    C.J. van Oss, M.K. Chaudhury, R.J. Good, Chem. Rev. 88, 927–941 (1988). doi: 10.1021/cr00088a006 CrossRefGoogle Scholar
  29. 29.
    D.J. Thomas, W.A. Atwell, Starches (Eagen Press, St. Paul, MN, 1999)Google Scholar
  30. 30.
    J.J.M. Swinkels, Strach 37, 1–5 (1985). doi: 10.1002/star.19850370102 CrossRefGoogle Scholar
  31. 31.
    H.E. Copeland, Starch Based Films: Their Production and Evaluation, PhD theses, University of Nottingham, Food Science Division, 2005Google Scholar
  32. 32.
    M.N. Bellon-Fontaine, J. Rault, C.J. Van Oss, Colloids Surf. B Biointerfaces 7, 47–53 (1996). doi: 10.1016/0927-7765(96)01272-6 CrossRefGoogle Scholar
  33. 33.
    P. Chavant, B. Martinie, T. Meylheuc, M.N. Bellon-Fontaine, Appl. Environ. Microbiol. 68, 728–737 (2002). doi: 10.1128/AEM.68.2.728-737.2002 PubMedCrossRefGoogle Scholar
  34. 34.
    T. Meylheuc, I. Giovannacci, R. Briandet, M.N. Bellon-Fontaine, J. Food Prot. 65, 786–793 (2002)PubMedGoogle Scholar
  35. 35.
    S.K. Mastronicolis, J.B. German, N. Megoulas, E. Petrou, P. Foka, G.M. Smith, Food Microbiol. 15, 299–306 (1998). doi: 10.1006/fmic.1997.0170 CrossRefGoogle Scholar
  36. 36.
    G. Midelet, B. Carpenter, J. Appl. Microbiol. 97, 262–270 (2004). doi: 10.1111/j.1365-2672.2004.02296.x PubMedCrossRefGoogle Scholar
  37. 37.
    C. Liu, Q. Zhao, Y. Liu, S. Wang, E.W. Abel, Colloids Surf. B Biointerfaces 61, 182–187 (2008). doi: 10.1016/j.colsurfb.2007.08.008 PubMedCrossRefGoogle Scholar
  38. 38.
    E. Medilanski, K. Kaufmann, L.Y. Wick, O. Wanner, H. Harms, Biofouling 18, 193–203 (2002). doi: 10.1080/08927010290011370 CrossRefGoogle Scholar
  39. 39.
    S.H. Flint, J.D. Brookd, P.J. Bremer, J. Food. Eng. 43, 235–242 (2000)CrossRefGoogle Scholar
  40. 40.
    B.H. Chew, K. Choi, A.K. Jain, J. Urol. 179, 499 (2008). doi: 10.1016/S0022-5347(08)61470-6 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.The School of BiosciencesThe University of NottinghamLoughboroughUK
  2. 2.Wolfson School of Mechanical and Manufacturing EngineeringLoughborough UniversityLoughboroughUK
  3. 3.Eastman Dental Institute – Microbial Diseases DivisionUniversity College LondonLondonUK

Personalised recommendations