Use of tissue transglutaminase and fibronectin to influence osteoblast responses to tricalcium phosphate scaffolds

  • M. D. BallEmail author
  • D. O’Connor
  • A. Pandit


To explore the possibility of controlling cell interaction with biomaterials, tricalcium phosphate scaffolds were modified using the enzyme tissue transglutaminase (tTgase) in conjunction with fibronectin. Previous reports in the literature have highlighted a number of favourable responses that this protein–enzyme complex can stimulate, including enhancing both cell adhesion, and mineralisation. Fibronectin and tTgase alone were used as controls, and a series of different concentrations of tTgase and fibronectin in combination were assessed. Cell metabolic activity, alkaline phosphatase production, and collagen content were all measured in cultures up to 28 days. Using tetracycline labelling, calcium containing multilayered regions were imaged and quantified. Addition of 6 μg fibronectin resulted in increased alkaline phosphatase activity in all combinations, while increased transglutaminase resulted in more collagen in the cell lysates. Samples treated with fibronectin produced many small mineralised areas, those with 6 μg fibronectin and transglutaminase produced numerous large mineralised areas. The mixture of fibronectin and transglutaminase may prove to be a useful treatment for producing increased osteoblast differentiation on scaffolds.


Alkaline Phosphatase Activity Large Nodule Tricalcium Phosphate Cell Metabolic Activity Transglutaminase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A. El-Ghannam, P. Ducheyne, I.M. Shapiro, J Orthop Res 17, 340 (1999). doi: 10.1002/jor.1100170307 PubMedCrossRefGoogle Scholar
  2. 2.
    U. Geißler, U. Hempel, C. Wolf, D. Scharnweber, H. Worch, K.-W. Wenzel, J Biomed Mater Res 51, 752 (2000). doi :10.1002/1097-4636(20000915)51:4<752::AID-JBM25>3.0.CO;2-7PubMedCrossRefGoogle Scholar
  3. 3.
    C. Roehleckea, M. Witta, M. Kaspera, E. Schulzec, C. Wolfb, A. Hofera et al., Cells Tissues Organs 168, 178 (2001). doi: 10.1159/000047833 CrossRefGoogle Scholar
  4. 4.
    D.M. Ferris, G.D. Moodie, P.M. Dimond, C.W.D. Giorani, M.G. Ehrlich, R.F. Valentini, Biomaterials 20, 2323 (1999). doi: 10.1016/S0142-9612(99)00161-1 PubMedCrossRefGoogle Scholar
  5. 5.
    T.J. Gao, T.S. Lindholm, B. Kommonen, P. Ragni, A. Paronzizni, T.C. Lindholm et al., J Biomed Mater Res 32, 505 (1996). doi :10.1002/(SICI)1097-4636(199612)32:4<505::AID-JBM2>3.0.CO;2-VPubMedCrossRefGoogle Scholar
  6. 6.
    L. Fesus, M. Piacentini, Trends Biochem Sci 27, 534 (2002). doi: 10.1016/S0968-0004(02)02182-5 PubMedCrossRefGoogle Scholar
  7. 7.
    D. Aeschlimann, O. Kaupp, M. Paulsson, J Cell Biol 129, 881 (1995). doi: 10.1083/jcb.129.3.881 PubMedCrossRefGoogle Scholar
  8. 8.
    S.S. Akimov, D. Krylov, L.F. Fleischman, A.M. Belkin, J Cell Biol 148, 825 (2000). doi: 10.1083/jcb.148.4.825 PubMedCrossRefGoogle Scholar
  9. 9.
    D.C. Sane, T.L. Moser, A.M. Pippen, C.J. Parker, K.E. Achyuthan, G. CS, Biochem Biophys Res Commun 157, 115 (1988). doi: 10.1016/S0006-291X(88)80020-2 PubMedCrossRefGoogle Scholar
  10. 10.
    M.T. Kaartinen, A. Pirhonen, A. Linnala-Kankkunen, P.H. Maenpaa, J Biol Chem 272, 22736 (1997). doi: 10.1074/jbc.272.36.22736 PubMedCrossRefGoogle Scholar
  11. 11.
    M.T. Kaartinen, A. Pirhonen, A. Linnala-Kankkunen, P.H. Maenpaa, J Biol Chem 274, 1729 (1999). doi: 10.1074/jbc.274.3.1729 PubMedCrossRefGoogle Scholar
  12. 12.
    M.T. Kaartinen, S. El-Maadaway, N.H. Rasanen, M.D. McKee, J Bone Miner Res 17, 2161 (2002). doi: 10.1359/jbmr.2002.17.12.2161 PubMedCrossRefGoogle Scholar
  13. 13.
    S.S. Akimov, A.M. Belkin, J Cell Sci 114, 2989 (2001)PubMedGoogle Scholar
  14. 14.
    D.J. Heath, S. Downes, E.A.M. Verderio, M. Griffin, J Bone Miner Res 16, 1477 (2001). doi: 10.1359/jbmr.2001.16.8.1477 PubMedCrossRefGoogle Scholar
  15. 15.
    D. Aeschlimann, A. Wetterwald, H. Fleisch, M. Paulsson, J Cell Biol 120, 1461 (1993). doi: 10.1083/jcb.120.6.1461 PubMedCrossRefGoogle Scholar
  16. 16.
    D. Aeschlimann, V. Thomazy, Connect Tissue Res 41, 1 (2000). doi: 10.3109/03008200009005638 PubMedCrossRefGoogle Scholar
  17. 17.
    A. Ito, A. Mase, Y. Takizawa, M. Shinkai, H. Honda, K.-I. Hata et al., J Biosci Bioeng 95, 196 (2003)PubMedGoogle Scholar
  18. 18.
    E.P. Broderick, D.M. O’Halloran, Y.A. Rochev, M. Griffin, R.J. Collighan, A.S. Pandit, J Biomed Mater Res B Appl Biomater 72, 37 (2005). doi: 10.1002/jbm.b.30119 PubMedCrossRefGoogle Scholar
  19. 19.
    D.J. Heath, P. Christian, M. Griffin, Biomaterials 23, 1519 (2002). doi: 10.1016/S0142-9612(01)00282-4 PubMedCrossRefGoogle Scholar
  20. 20.
    E.A.M. Verderio, A. Coombes, R.A. Jones, L. Xiaoling, D.J. Heath, S. Downes et al., J Biomed Mater Res 54, 294 (2001). doi :10.1002/1097-4636(200102)54:2<294::AID-JBM17>3.0.CO;2-QPubMedCrossRefGoogle Scholar
  21. 21.
    C.A. Gaudry, E. Verderio, R.A. Jones, C. Smith, M. Griffin, Exp Cell Res 252, 104 (1999). doi: 10.1006/excr.1999.4633 PubMedCrossRefGoogle Scholar
  22. 22.
    R. Jones, B. Nicholas, S. Mian, P. Davies, M. Griffin, J Cell Sci 110, 2461 (1997)PubMedGoogle Scholar
  23. 23.
    E.A.M. Verderio, D. Telci, A. Okoye, G. Melino, M. Griffin, J Biol Chem 278, 42604 (2003). doi: 10.1074/jbc.M303303200 PubMedCrossRefGoogle Scholar
  24. 24.
    S. Ueki, J. Takagi, Y. Saito, J Cell Sci 109, 2727 (1996)PubMedGoogle Scholar
  25. 25.
    A.J. Garcia, D. Boettiger, Biomaterials 20, 2427 (1999). doi: 10.1016/S0142-9612(99)00170-2 PubMedCrossRefGoogle Scholar
  26. 26.
    A.J. Garcia, J. Takagi, D. Boettiger, J Biol Chem 273, 34710 (1998). doi: 10.1074/jbc.273.52.34710 PubMedCrossRefGoogle Scholar
  27. 27.
    A. Moursi, R. Globus, C. Damsky, J Cell Sci 110, 2187 (1997)PubMedGoogle Scholar
  28. 28.
    S.N. Stephansson, B.A. Byers, A.J. Garcia, Biomaterials 23, 2527 (2002). doi: 10.1016/S0142-9612(01)00387-8 PubMedCrossRefGoogle Scholar
  29. 29.
    R. Dardik, B. Shenkman, I. Tamarin, R. Eskaraev, J. Harsfalvi, D. Varon et al., Thromb Res 105, 317 (2002). doi: 10.1016/S0049-3848(02)00014-2 PubMedCrossRefGoogle Scholar
  30. 30.
    M. Nurminskaya, C. Magee, L. Faverman, T.F. Linsenmayer, Dev Biol 263, 139 (2003). doi: 10.1016/S0012-1606(03)00445-7 PubMedCrossRefGoogle Scholar
  31. 31.
    D.J. McQuillan, M.D. Richardson, J.F. Bateman, Bone 16, 415 (1995)PubMedGoogle Scholar
  32. 32.
    G. Meadows, Orthopaedics 25, s579 (2002)Google Scholar
  33. 33.
    R. Linovitz, T. Peppers, Orthopaedics 25, 585 (2002)Google Scholar
  34. 34.
    R. Rago, J. Mitchen, G. Wilding, Anal Biochem 191, 31 (1990). doi: 10.1016/0003-2697(90)90382-J PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.National Centre for Biomedical Engineering ScienceNational University of IrelandGalwayIreland
  2. 2.Department of Mechanical and Biomedical EngineeringNational University of IrelandGalwayIreland
  3. 3.Department of MaterialsImperial CollegeLondonUK

Personalised recommendations