Advertisement

Injectable acrylic bone cements for vertebroplasty based on a radiopaque hydroxyapatite. Formulation and rheological behaviour

  • L. Hernández
  • M. GurruchagaEmail author
  • I. Goñi
Article

Abstract

The utilization of injectable acrylic bone cement is crucial to the outcome of vertebroplasty and kyphoplasty. However, only a few cements that are in clinical use today are formulated specifically for use in these procedures and even these formulations are not regarded as “ideal” injectable bone cements. The aim of this work is to prepare bioactive bone cements by adding strontium hydroxyapatite (SrHA) to a cement formulation based on polymethylmethacrylate. Thus, the cement combines the immediate mechanical support given by the setting of the acrylic matrix with optimum radiopacity and bioactivity due to the incorporation of the SrHA. Formulations of bioactive cement were prepared with 10 and 20 wt% of SrHA as synthesised and after a surface treatment with the monomer. Cements loaded with treated particles showed an enhancement of their handling properties, and hence, an improvement on their rheological behaviour, injectabilities and compressive parameters. Further experiments were also carried out to determine their bioactivity and biocompatibility and results appear in other publication.

Keywords

PMMA Simulated Body Fluid Bone Cement Acrylic Bone Cement Cement Formulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This research was supported, by MCYT (MAT2007-63355) and a Predoctoral Fellowship from the University of the Basque Country (9/UPV 00203.215-13540/2001).

References

  1. 1.
    N. Amoretti, E. Hovorka, P. Marcy, C. Lamasse, P. Brunner, C. Roux, P. Chevallier, P. Boileau, J. Bruneton, Burst fracture of the spine involving vertebrae presenting no other lesions: The role of vertebroplasty. Clin. Imaging 29, 379–382 (2005). doi: 10.1016/j.clinimag.2005.07.006 PubMedCrossRefGoogle Scholar
  2. 2.
    S.P. Suresh, R.W. Whitehouse, Vertebroplasty and kyphoplasty. J. Br. Men. Soc. 11, 28–32 (2005). doi: 10.1258/1362180053654538 CrossRefGoogle Scholar
  3. 3.
    H. Deramond, C. Depriester, P. Galibert, D. Le Gars, Percutaneous vertebroplasty with polymethylmethacrylate. Technique, indications, and results. Radiol. Clin. North. Am. 36, 533–546 (1998). doi: 10.1016/S0033-8389(05)70042-7 PubMedCrossRefGoogle Scholar
  4. 4.
    E. Truumees, A. Hilibrand, A.R. Vaccaro, Percutaneous vertebral augmentation. Spine J. 4, 218–229 (2004). doi: 10.1016/j.spinee.2003.08.029 PubMedCrossRefGoogle Scholar
  5. 5.
    G. Lewis, Injectable bone cements for use in vertebroplasty and kyphoplasty: state-of-the-art review. J. Biomed. Mater. Res. B. Appl. Biomater. 76B, 456–468 (2006). doi: 10.1002/jbm.b.30398 CrossRefGoogle Scholar
  6. 6.
    M.J. Dalby, L. Di Silvio, E.J. Harper, W. Bonfield, Increasing hydroxyapatite incorporation into poly(methylmethacrylate) cement increases osteoblast adhesion and response. Biomaterials 23, 569–576 (2002). doi: 10.1016/S0142-9612(01)00139-9 PubMedCrossRefGoogle Scholar
  7. 7.
    L.L. Hench, Bioceramics: from concept to clinic. J. Am. Ceram. Soc. 74, 1487–1510 (1991). doi: 10.1111/j.1151-2916.1991.tb07132.x CrossRefGoogle Scholar
  8. 8.
    W. Henning, B.A. Blencke, H. Bromer, K.K. Deutscher, A. Gross, W. Ege, Investigations with bioactivated polymethylmethacrylates. J. Biomed. Mater. Res. 13, 89–99 (1979). doi: 10.1002/jbm.820130110 CrossRefGoogle Scholar
  9. 9.
    S. Shinzato, M. Koyashi, W.F. Mousa, M. Kamimura, M. Neo, Y. Kitamura, T. Kokubo, T. Nakamura, Bioactive polymethyl methacrylate-based bone cement: comparison of glass beads, apatite- and wollastonite-containing glass-ceramic and hydroxyapatite fillers on mechanical and biological properties. J Biomed. Mater. Res. 51, 258–272 (2000). doi :10.1002/(SICI)1097-4636(200008)51:2<258::AID-JBM15>3.0.CO;2-SGoogle Scholar
  10. 10.
    S. Shinzato, T. Nakamura, T. Kokubo, Y. Kitamura, PMMA-based bioactive cement: Effect of glass bead filler content and histological change with time. J. Biomed. Mater. Res. 59, 225–232 (2002). doi: 10.1002/jbm.1236 PubMedCrossRefGoogle Scholar
  11. 11.
    J. Raveh, H. Stich, P. Schawalder, C. Ruchti, H. Cottier, Biocement—a new material. Acta. Otolaryngol. 94, 371–384 (1982). doi: 10.3109/00016488209128925 PubMedCrossRefGoogle Scholar
  12. 12.
    M. Saito, A. Maruoka, T. Mori, N. Sugano, K. Hino, Experimental studies on a new bioactive bone cement: hydroxyapaptite composite resin. Biomaterials 15, 156–160 (1994). doi: 10.1016/0142-9612(94)90266-6 PubMedCrossRefGoogle Scholar
  13. 13.
    S.M. Belkoff, J.M. Mathis, E.M. Erbe, D.C. Fenton, Biomechanical evaluation of a new bone cement for use in vertebroplasty. Spine 25, 1061–1064 (2000). doi: 10.1097/00007632-200005010-00004 PubMedCrossRefGoogle Scholar
  14. 14.
    H. Deramond, N.T. Wright, S.M. Belkoff, Temperature elevation caused by bone cement polymerisation during vertebroplasty. Bone 25, 17S–21S (1999). doi: 10.1016/S8756-3282(99)00127-1 PubMedCrossRefGoogle Scholar
  15. 15.
    S. Belkoff, H. Deramond, J. Mathis, L. Jasper, Vertebroplasty: the biomechanical effect of cement volume. 46th Annual Meeting, Orthopaedic Research Society, Orlando, Florida, 2000, p. 0356Google Scholar
  16. 16.
    T. Clineff, E. Erbe, G. Gualtieri, B. Carroll, Quantitative evaluation of bone apposition to cortoss at 1 year. 46th Annual Meeting, Orthopaedic Research Society, Orlando, Florida, 2000, p. 0999Google Scholar
  17. 17.
    Y.W. Li, J.C.Y. Leong, W.W. Lu, K.D.K. Luk, K.M.C. Cheung, K.Y. Chiu, S.P. Chow, A novel injectable bioactive bone cement for spinal surgery: A developmental and preclinical study. J. Biomed. Mater. Res. A 52, 164–170 (2000). doi :10.1002/1097-4636(200010)52:1<164::AID-JBM21>3.0.CO;2-RGoogle Scholar
  18. 18.
    G.X. Ni, K.Y. Chiu, W.W. Lu, Y. Wang, Y.G. Zhang, L.B. Hao, Z.Y. Li, W.M. Lam, S.B. Lu, K.D.K. Luk, Strontium-containing hydroxyapatite bioactive bone cement in revision hip arthroplasty. Biomaterials 27, 4348–4355 (2006). doi: 10.1016/j.biomaterials.2006.03.048 PubMedCrossRefGoogle Scholar
  19. 19.
    L. Hernández, M. Gurruchaga, I. Goñi, Influence of powder particle size distribution on complex viscosity and other properties of acrylic bone cement for vertebroplasty and kyphoplasty. J. Biomed. Mater. Res. B. Appl. Biomater. 77B, 98–103 (2006). doi: 10.1002/jbm.b.30409 CrossRefGoogle Scholar
  20. 20.
    F. Zhao, W.W. Lu, K.D.K. Luk, K.M.C. Cheung, C.T. Wong, J.C.Y. Leong, K.D. Yao, Surface treatment of injectable strontium-containing bioactive bone cement for vertebroplasty. J. Biomed. Mater. Res. B. Appl. Biomater. 69B, 79–86 (2004). doi: 10.1002/jbm.b.20041 CrossRefGoogle Scholar
  21. 21.
    ISO 5833:2002 (E). Implants for surgery—acrylic resin cementsGoogle Scholar
  22. 22.
    B. Pascual, B. Vázquez, M. Gurruchaga, I. Goñi, P. Ginebra, J. Gil, J.A. Planell, B. Levenfeld, J. San Román, New aspects of the effect of size and size distribution on the setting parameters and mechanical properties of acrylic bone cements. Biomaterials 17, 509–516 (1996). doi: 10.1016/0142-9612(96)82725-6 PubMedCrossRefGoogle Scholar
  23. 23.
    Y. Ebisawa, T. Kokubo, K. Ohura, T. Yamamuro, Bioactivity of CaO-SiO2-based glasses: in vitro evaluation. J. Mater. Sci. Mater. Med. 1, 239–244 (1999). doi: 10.1007/BF00701083 CrossRefGoogle Scholar
  24. 24.
    L. Hernández, M. Fernández, F. Collía, M. Gurruchaga, I. Goñi, Preparation of acrylic bone cements for vertebroplasty with bismuth salicylate as radiopaque agent. Biomaterials 1, 100–107 (2006). doi: 10.1016/j.biomaterials.2005.05.074 CrossRefGoogle Scholar
  25. 25.
    D.F. Farrar, J. Rose, Rheological properties of bone cements during curing. Biomaterials 22, 3005–3013 (2001). doi: 10.1016/S0142-9612(01)00047-3 PubMedCrossRefGoogle Scholar
  26. 26.
    L. Hernández, P. Parra, B. Vázquez, A. López-Bravo, F. Collía, I. Goñi, M. Gurruchaga, J. San Román, Injectable acrylic bone cements for vertebroplasty based on a radiopaque hydroxyapatite. Bioactivity and biocompatibility. J. Biomed. Mat. Res.-B (2008). doi: 10.1002/jbm.b.31156

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Departmento C.T. Polímeros, Facultad de QuímicaUniversidad del País Vasco. Polymat (Institute of Polymeric Materials)San SebastianSpain

Personalised recommendations