Fabrication of porous titanium scaffold materials by a fugitive filler method

Article

Abstract

A clean powder metallurgy route was developed here to produce Ti foams, using a fugitive polymeric filler, polypropylene carbonate (PPC), to create porosities in a metal-polymer compact at the pre-processing stage. The as-produced foams were studied by scanning electron microscopy (SEM), LECO combustion analyses and X-ray diffraction (XRD). Compression tests were performed to assess their mechanical properties. The results show that titanium foams with open pores can be successfully produced by the method. The compressive strength and modulus of the foams decrease with an increasing level of porosity and can be tailored to those of the human bones. After alkali treatment and soaking in a simulated body fluid (SBF) for 3 days, a thin apatite layer was formed along the Ti foam surfaces, which provides favourable bioactive conditions for bone bonding and growth.

References

  1. 1.
    G. Ryan, A. Pandit, D.P. Apatsidis, Biomaterials 27, 2651 (2006)CrossRefGoogle Scholar
  2. 2.
    S.J. Simske, R.A. Ayers, T.A. Bateman, Mater. Sci. Forum 250, 151 (1997)CrossRefGoogle Scholar
  3. 3.
    C.E. Wen, Y. Yamada, K. Shimojima, Y. Chino, H. Hosokawa, M. Mabuchi, J. Biomed. Mater. Res. 17, 2633 (2002)Google Scholar
  4. 4.
    L.D. Zardiackas, D.E. Parsell, L.D. Dillon, D.W. Mitchell, L.A. Nunnery, R. Poggie, J. Biomed. Mater. Res. 58, 180 (2001)CrossRefGoogle Scholar
  5. 5.
    T.M. Freyman, I.V. Yannas, L.J. Gibson, Prog. Mater. Sci. 46, 273 (2001)CrossRefGoogle Scholar
  6. 6.
    C.E. Wen, M. Mabuchi, Y. Yamada, K. Shimojima, Y. Chino, T. Asahina, Scripta Mater. 45, 1147 (2001)CrossRefGoogle Scholar
  7. 7.
    Y. Zhang, H.H.K. Xu, S. Takagi, J. Mater. Sci. Mater. Med. 17, 437 (2006)CrossRefGoogle Scholar
  8. 8.
    D.W. Hutmacher, Biomaterials 21, 2529 (2000)CrossRefGoogle Scholar
  9. 9.
    X. Liu, P.X. Ma, Ann. Biomed. Eng. 32, 477 (2004)CrossRefGoogle Scholar
  10. 10.
    H. Yoshikawa, A. Myoui, J. Artif. Organs 8, 131 (2005)CrossRefGoogle Scholar
  11. 11.
    M. Kellomaki, H. Niiranen, K. Puumanen, N. Ashammakhi, T. Waris, P. Tormala, Biomaterials 21, 2495 (2000)CrossRefGoogle Scholar
  12. 12.
    D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato, T. Yashiro, Mater. Sci. Eng. A243, 244 (1998)Google Scholar
  13. 13.
    W.F. Ho, C.P. Ju, C.H. Chern Lin, Biomaterials 20, 2115 (1999)CrossRefGoogle Scholar
  14. 14.
    D. M. Brunette, P. Tengvall, M. Textor, P. Thomsen, Titanium in Medicine (Springer-Verlag, Berlin, 2001)Google Scholar
  15. 15.
    D.C. Dunand, Adv. Eng. Mater. 6, 369 (2004)CrossRefGoogle Scholar
  16. 16.
    J. Banhart, Prog. Mater. Sci. 46, 559 (2001)CrossRefGoogle Scholar
  17. 17.
    R. Ricceri, F. Arcuri, P. Matteazzi, J. Phys. IV 11, 51 (2001)CrossRefGoogle Scholar
  18. 18.
    R. Ricceri, P. Matteazzi, Int. J. Powder Metall. 39, 53 (2003)Google Scholar
  19. 19.
    J.P. Li, S.H. Li, K. de Groot, P. Layrolle, Key Eng. Mater. 218–220, 51 (2002)Google Scholar
  20. 20.
    C.S.Y. Jee, N. Ozguven, Z.X. Guo, J.R.G. Evans, Metall. Mater. Trans. B 31B, 1345 (2000)CrossRefGoogle Scholar
  21. 21.
    Z.X. Guo, C.S.Y. Jee, N. Ozguven, J.R.G. Evans, Mater. Sci. Tech. 16, 776 (2000)Google Scholar
  22. 22.
    C. M. Schwanke, L. Schaeffer, Advanced powder technology (Trans Tech., Zurich, 1999) p. 190Google Scholar
  23. 23.
    S. Fujibayashi, T. Nakamura, S. Nishiguchi, J. Tamura, M. Uchida, H.M. Kim, T. Kokubo, J. Biomed. Mater. Res. 56, 562 (2001)CrossRefGoogle Scholar
  24. 24.
    M. Wei, H.M. Kim, T. Kokubo, J.H. Evans, Mater. Sci. Eng. C 20, 125 (2002)CrossRefGoogle Scholar
  25. 25.
    F. Liang, L. Zhou, K. Wang, Surf. Coat. Technol. 165, 133 (2003)CrossRefGoogle Scholar
  26. 26.
    S. Fujibayashi, M. Neo, H.M. Kim, T. Kokubo, T. Nakamura, Biomaterials 25, 443 (2004)CrossRefGoogle Scholar
  27. 27.
    S.A. Hacking, E.J. Harvey, M. Tanzer, J.J. Krygier, J.D. Bobyn, J. Bone Joint Surg. 85B, 1182 (2003)CrossRefGoogle Scholar
  28. 28.
    M. Takemoto, S. Fujibayashi, M. Neo, J. Suzuki, T. Matsushita, T. Kokubo, T. Nakamura, Biomaterials 27, 2682 (2006)CrossRefGoogle Scholar
  29. 29.
    T. Kokubo, H.M. Kim, M. Kawashita, T. Nakamura, J. Mater. Sci. Mater. Med. 15, 99 (2004)CrossRefGoogle Scholar
  30. 30.
    A. Oyane, H.M. Kim, T. Furuya, T. Kokubo, T. Miyazaki, T. Nakamura, J. Biomed. Mater. Res. 65A, 188 (2003)CrossRefGoogle Scholar
  31. 31.
    N.R.F. Beeley, Development of a novel powder coated fibre pre-processing route for cost effective production of metal matrix composites. PhD Thesis, Queen Mary, University of London, London, 2002Google Scholar
  32. 32.
    K.T. Bowers, J.C. Keller, B.A. Randolph, D.G. Wick, C.M. Michaels, Int. J. Oral Maxillofac. Implants 7, 302 (1992)Google Scholar
  33. 33.
    J. D. Currey, Bones: Structure and Mechanics (Princeton Univeristy Press, Princeton, 2002)Google Scholar
  34. 34.
    H.B. Wen, J.R. de Wijn, K. de Groot, J. Biomed. Mater. Res. 41, 227 (1998)CrossRefGoogle Scholar
  35. 35.
    M. Uchida, H.M. Kim, T. Kokubo, S. Fujibayashi, T. Nakamura, J. Biomed. Mater. Res. 63, 522 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Materials EngineeringNational Pingtung University of Science and TechnologyPingtungTaiwan
  2. 2.Department of ChemistryUniversity Colloge LondonLondonUK
  3. 3.Institute of Metal ResearchChinese Academy of SciencesShenyangChina

Personalised recommendations