Journal of Materials Science: Materials in Medicine

, Volume 19, Issue 12, pp 3497–3505 | Cite as

Precipitation of calcium phosphate in the presence of albumin on titanium implants with four different possibly bioactive surface preparations. An in vitro study

  • V. Stenport
  • P. Kjellin
  • M. Andersson
  • F. Currie
  • Y.-T. Sul
  • A. Wennerberg
  • A. Arvidsson


The aim of the present study was to compare the nucleating behaviour on four types of bioactive surfaces by using the simulated body fluid (SBF) model with the presence albumin. Titanium discs were blasted (B) and then prepared by alkali and heat treatment (AH), anodic oxidation (AO), fluoridation (F), or hydroxyapatite coating (HA). The discs were immersed in SBF with 4.5 mg/ml albumin for 3 days, 1, 2, 3 and 4 weeks and analysed with scanning electron microscopy/energy dispersive X-ray analysis (SEM/EDX) and X-ray photoelectron spectroscopy (XPS). Topographic surface characterisation was performed with a contact stylus profilometer. The results demonstrated that the bioactive surfaces initiated an enhanced calcium phosphate (CaP) formation and a more rapid increase of protein content was present on the bioactive surfaces compared to the blasted control surface. The observation was present on all bioactive surfaces. The fact that there was a difference between the bioactive surfaces and the blasted control surface with respect to precipitation of CaP and protein content on the surfaces support the fact that there may be biochemical advantages in vivo by using a bioactive surface.


  1. 1.
    L. Hench, Handbook of bioactive ceramics (CRC press, Boca Raton, 1990), p. 7Google Scholar
  2. 2.
    H.M. Kim, F. Miyaji, T. Kokubo, T. Nakamura, J. Mater. Sci. Mater. Med. 8, 341 (1997). doi:10.1023/A:1018524731409 CrossRefGoogle Scholar
  3. 3.
    Y.T. Sul, C. Johansson, E. Byon, T. Albrektsson, Biomaterials 26, 6720 (2005). doi:10.1016/j.biomaterials.2005.04.058 CrossRefGoogle Scholar
  4. 4.
    J.E. Ellingsen, J Mater Sci Mater Med 6, 749 (1995). doi:10.1007/BF00134312 CrossRefGoogle Scholar
  5. 5.
    M. Gottlander, T. Albrektsson, L.V. Carlsson, Int. J. Oral Maxillofac. Implants 7, 485 (1992)Google Scholar
  6. 6.
    T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, T. Yamamuro, J. Biomed. Mater. Res. 24, 721 (1990). doi:10.1002/jbm.820240607 CrossRefGoogle Scholar
  7. 7.
    T. Peltola, M. Patsi, H. Rahiala, I. Kangasniemi, A. Yli-Urpo, J. Biomed. Mater. Res. 41, 504 (1998). doi:10.1002/(SICI)1097-4636(19980905)41:3<504::AID-JBM22>3.0.CO;2-GCrossRefGoogle Scholar
  8. 8.
    H. Takadama, H.M. Kim, T. Kokubo, T. Nakamura, J. Biomed. Mater. Res. 57, 441 (2001). doi:10.1002/1097-4636(20011205)57:3<441::AID-JBM1187>3.0.CO;2-BCrossRefGoogle Scholar
  9. 9.
    T. Kokubo, H. Takadama, Biomaterials 27, 2907 (2006). doi:10.1016/j.biomaterials.2006.01.017 CrossRefGoogle Scholar
  10. 10.
    Y. Liu, P. Layrolle, J. De Brujin, C. Van Blitterswijk, K. De Groot, J. Biomed. Mater. Res. 57, 327 (2001). doi:10.1002/1097-4636(20011205)57:3<327::AID-JBM1175>3.0.CO;2-JCrossRefGoogle Scholar
  11. 11.
    A. Arvidsson, V. Franke Stenport, M. Andersson, P. Kjellin, T. Sul, A. Wennerberg. J. Mater. Sci. 18, 1945 (2007)CrossRefGoogle Scholar
  12. 12.
    H. Wen, J. de Wijn, K. De Groot, J. Biomed. Mater. Res. 46, 245 (1999). doi:10.1002/(SICI)1097-4636(199908)46:2<245::AID-JBM14>3.0.CO;2-ACrossRefGoogle Scholar
  13. 13.
    C. Combes, C. Rey, M. Freche, J. Mater. Sci. 10, 153 (1999). doi:10.1023/A:1008933406806 CrossRefGoogle Scholar
  14. 14.
    H. Zeng, K. Chittur, W. Lacefield, Biomaterials 20, 377 (1999). doi:10.1016/S0142-9612(98)00184-7 CrossRefGoogle Scholar
  15. 15.
    H. Takadama, H.M. Kim, T. Kokubo, T. Nakamura, J. Biomed. Mater. Res. 57, 441 (2001). doi:10.1002/1097-4636(20011205)57:3<441::AID-JBM1187>3.0.CO;2-BCrossRefGoogle Scholar
  16. 16.
    H.M. Kim, F. Miyaji, T. Kokubo, T. Nakamura, J Mater Sci Mater Med 8, 341 (1997). doi:10.1023/A:1018524731409 CrossRefGoogle Scholar
  17. 17.
    H.M. Kim, F. Miyaji, T. Kokubo, S. Nishiguchi, T. Nakamura, J. Biomed. Mater. Res. 45, 100 (1999). doi:10.1002/(SICI)1097-4636(199905)45:2<100::AID-JBM4>3.0.CO;2-0CrossRefGoogle Scholar
  18. 18.
    Y.T. Sul, C.B. Johansson, Y. Jeong, T. Albrektsson, Med. Eng. Phys. 23, 329 (2001). doi:10.1016/S1350-4533(01)00050-9 CrossRefGoogle Scholar
  19. 19.
    A. Oyane, H.M. Kim, T. Furuya, T. Kokubo, T. Miyazaki, T. Nakamura, J. Biomed. Mater. Res. 65A, 188 (2003). doi:10.1002/jbm.a.10482 CrossRefGoogle Scholar
  20. 20.
    T. Albrektsson, A. Wennerberg, Int. J. Prosth. 17, 536 (2004)Google Scholar
  21. 21.
    K.J. Stout, P.J. Sullivan, W.P. Dong, E. Mainsah, N. Luo, T. Mathia et al., The development of methods for characterisation of roughness in three dimensions. EUR 15178 EN of commission of the European Communities (University of Birmingham, Birmingham, 1993)Google Scholar
  22. 22.
    A.J. Vander, J.H. Sherman, D.S. Luciano, in Human physiology. The mechanisms of body function, 5th ed. (McGraw-Hill Publishing Company, New York, 1990), p. 349Google Scholar
  23. 23.
    X. Lu, Y. Leng, X. Zhang, J. Xu, L. Qin, C. Chan, Biomaterials 26, 1793 (2005). doi:10.1016/j.biomaterials.2004.06.009 CrossRefGoogle Scholar
  24. 24.
    S. Areva, H. Pladan, T. Peltola, T. Närhi M. Jokinen, M. Lindèn, Biomed. Mater. Res. 70A:169 (2004). doi:10.1002/jbm.a.20120 Google Scholar
  25. 25.
    Y. Liu, E. Hunziker, P. Layrolle, C. Van Blitterwijk, P. Calvert, K. De Groot, J. Biomed. Mater. Res. 67A, 1155 (2003). doi:10.1002/jbm.a.20019 CrossRefGoogle Scholar
  26. 26.
    Y. Liu, E. Hunziker, N. Randall, K. De Groot, P. Layrolle, Biomaterials 24, 65 (2003). doi:10.1016/S0142-9612(02)00252-1 CrossRefGoogle Scholar
  27. 27.
    D. Wasell, G. Embery, Biomaterials 17, 859 (1996). doi:10.1016/0142-9612(96)83280-7 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • V. Stenport
    • 1
    • 2
    • 3
  • P. Kjellin
    • 4
  • M. Andersson
    • 4
  • F. Currie
    • 4
  • Y.-T. Sul
    • 1
  • A. Wennerberg
    • 1
    • 2
  • A. Arvidsson
    • 1
  1. 1.Department of BiomaterialsGöteborg UniversityGoteborgSweden
  2. 2.Department of Prosthetic Dentistry/Dental Materials Science, Sahlgrenska AcademyGöteborg UniversityGoteborgSweden
  3. 3.Brånemarkclinic, Public Health CareGoteborgSweden
  4. 4.Promimic AB, Stena Center 1BGoteborgSweden

Personalised recommendations