Journal of Materials Science: Materials in Medicine

, Volume 19, Issue 11, pp 3455–3463 | Cite as

Gene expression by marrow stromal cells in a porous collagen–glycosaminoglycan scaffold is affected by pore size and mechanical stimulation

  • Elaine M. ByrneEmail author
  • Eric Farrell
  • Louise A. McMahon
  • Matthew G. Haugh
  • Fergal J. O’Brien
  • Veronica A. Campbell
  • Patrick J. Prendergast
  • Brian C. O’Connell


Marrow stromal cell (MSC) populations, which are a potential source of undifferentiated mesenchymal cells, and culture scaffolds that mimic natural extracellular matrix are attractive options for orthopaedic tissue engineering. A type I collagen–glycosaminoglycan (CG) scaffold that has previously been used clinically for skin regeneration was recently shown to support expression of bone-associated proteins and mineralisation by MSCs cultured in the presence of osteogenic supplements. Here we follow RNA markers of osteogenic differentiation in this scaffold. We demonstrate that transcripts of the late stage markers bone sialoprotein and osteocalcin are present at higher levels in scaffold constructs than in two-dimensional culture, and that considerable gene induction can occur in this scaffold even in the absence of soluble osteogenic supplements. We also find that bone-related gene expression is affected by pore size, mechanical constraint, and uniaxial cyclic strain of the CG scaffold. The data presented here further establish the CG scaffold as a potentially valuable substrate for orthopaedic tissue engineering and for research on the mechanical interactions between cells and their environment, and suggest that a more freely-contracting scaffold with larger pore size may provide an environment more conducive to osteogenesis than constrained scaffolds with smaller pore sizes.


Average Pore Size Cyclic Strain Osteogenic Medium UMR106 Cell Osteogenic Supplement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was funded by the Programme for Research in Third Level Institutions (Trinity Centre for Bioengineering) administered by the Higher Education Authority, Ireland. We thank Dr. Ionnais Yannas and Dr. Brendan Harley (Massachusetts Institute of Technology) for the generous gift of scaffold used in some of the experiments, Mr. Alan Reid and Mr. Gabriel Nicholson (Trinity Centre for Bioengineering) for rig design and fabrication, respectively, and Prof. Noel Claffey (Dublin Dental School and Hospital) for advice on statistical analysis.


  1. 1.
    I.V. Yannas, E. Lee, D.P. Orgill, E.M. Skrabut, G.F. Murphy, Proc. Natl. Acad. Sci. U. S. A. 86, 933 (1989)CrossRefGoogle Scholar
  2. 2.
    F.J. O’Brien, B.A. Harley, I.V. Yannas, L. Gibson, Biomaterials 25, 1077 (2004)CrossRefGoogle Scholar
  3. 3.
    F.J. O’Brien, B.A. Harley, I.V. Yannas, L.J. Gibson, Biomaterials 26, 433 (2005)CrossRefGoogle Scholar
  4. 4.
    M.H. Spilker, K. Asano, I.V. Yannas, M. Spector, Biomaterials 22, 1085 (2001)CrossRefGoogle Scholar
  5. 5.
    S. Nehrer, H.A. Breinan, A. Ramappa, G. Young, S. Shortkroff, L.K. Louie, C.B. Sledge, I.V. Yannas, M. Spector, Biomaterials 18, 769 (1997)CrossRefGoogle Scholar
  6. 6.
    J. Zeltinger, J.K. Sherwood, D.A. Graham, R. Mueller, L.G. Griffith, Tissue Eng. 7, 557 (2001)CrossRefGoogle Scholar
  7. 7.
    E. Farrell, J.F. O’Brien, P. Doyle, J. Fischer, I. Yannas, B.A. Harley, B. O’Connell, P.J. Prendergast, V.A. Campbell, Tissue Eng. 12, 459 (2006)CrossRefGoogle Scholar
  8. 8.
    T.M. Freyman, I.V. Yannas, R. Yokoo, L.J. Gibson, Biomaterials 22, 2883 (2001)CrossRefGoogle Scholar
  9. 9.
    T.M. Freyman, I.V. Yannas, Y.S. Pek, R. Yokoo, L.J. Gibson, Exp. Cell Res. 269, 140 (2001)CrossRefGoogle Scholar
  10. 10.
    C.R. Lee, H.A. Breinan, S. Nehrer, M. Spector, Tissue Eng. 6, 555 (2000)CrossRefGoogle Scholar
  11. 11.
    D.S. Torres, T.M. Freyman, I.V. Yannas, M. Spector, Biomaterials 21, 1607 (2000)CrossRefGoogle Scholar
  12. 12.
    C. Menard, S. Mitchell, M. Spector, Biomaterials 21, 1867 (2000)CrossRefGoogle Scholar
  13. 13.
    C.A. Simmons, S. Matlis, A.J. Thornton, S. Chen, C.Y. Wang, D.J. Mooney, J. Biomech. 36, 1087 (2003)CrossRefGoogle Scholar
  14. 14.
    M. Koike, H. Shimokawa, Z. Kanno, K. Ohya, K. Soma, J. Bone Miner. Metab. 23, 219 (2005)CrossRefGoogle Scholar
  15. 15.
    L.E. Claes, C.A. Heigele, J. Biomech. 32, 255 (1999)CrossRefGoogle Scholar
  16. 16.
    L.V. Harter, K.A. Hruska, R.L. Duncan, Endocrinology 136, 528 (1995)CrossRefGoogle Scholar
  17. 17.
    A. Ignatius, H. Blessing, A. Liedert, C. Schmidt, C. Neidlinger-Wilke, D. Kaspar, B. Friemert, L. Claes, Biomaterials 26, 311 (2005)CrossRefGoogle Scholar
  18. 18.
    J. Klein-Nulend, J. Roelofsen, C.M. Semeins, A.L. Bronckers, E.H. Burger, J. Cell. Physiol. 170, 174 (1997)CrossRefGoogle Scholar
  19. 19.
    H.L. Holtorf, J.A. Jansen, A.G. Mikos, J. Biomed. Mater. Res. A 72, 326 (2005)Google Scholar
  20. 20.
    J. You, G.C. Reilly, X. Zhen, C.E. Yellowley, Q. Chen, H.J. Donahue, C.R. Jacobs, J. Biol. Chem. 276, 13365 (2001)CrossRefGoogle Scholar
  21. 21.
    J.A. Pedersen, M.A. Swartz, Ann. Biomed. Eng. 33, 1469 (2005)CrossRefGoogle Scholar
  22. 22.
    L.A. McMahon, A.J. Reid, V.A. Campbell, P.J. Prendergast, Ann. Biomed. Eng. 36, 185 (2008)CrossRefGoogle Scholar
  23. 23.
    P.J. Prendergast, R. Huiskes, K. Soballe, J. Biomech. 30, 539 (1997)CrossRefGoogle Scholar
  24. 24.
    D.J. Kelly, P.J. Prendergast, Tissue Eng. 12, 2509 (2006)CrossRefGoogle Scholar
  25. 25.
    C.M. Giachelli, S. Steitz, Matrix Biol. 19, 615 (2000)CrossRefGoogle Scholar
  26. 26.
    H. Kojima, T. Uede, T. Uemura, J. Biochem. (Tokyo) 136, 377 (2004) Google Scholar
  27. 27.
    E. Farrell, E.M. Byrne, J. Fischer, F.J. O’Brien, B.C. O’Connell, P.J. Prendergast, V.A. Campbell, Technol. Health Care 15, 19 (2007)Google Scholar
  28. 28.
    G. Xiao, D. Wang, M.D. Benson, G. Karsenty, R.T. Franceschi, J. Biol. Chem. 273, 32988 (1998)CrossRefGoogle Scholar
  29. 29.
    M.P. Lynch, J.L. Stein, G.S. Stein, J.B. Lian, Exp. Cell Res. 216, 35 (1995)CrossRefGoogle Scholar
  30. 30.
    M. Mizuno, Y. Kuboki, J Biochem. (Tokyo) 129, 133 (2001)Google Scholar
  31. 31.
    J. Jaworski, C.M. Klapperich, Biomaterials 27, 4212 (2006)CrossRefGoogle Scholar
  32. 32.
    P. Tolstoshev, R. Haber, B.C. Trapnell, R.G. Crystal, J. Biol. Chem. 256, 9672 (1981)Google Scholar
  33. 33.
    M.A. Stepp, M.S. Kindy, C. Franzblau, G.E. Sonenshein, J. Biol. Chem. 261, 6542 (1986)Google Scholar
  34. 34.
    S. Gronthos, A.C. Zannettino, S.J. Hay, S. Shi, S.E. Graves, A. Kortesidis, P.J. Simmons, J. Cell Sci. 116, 1827 (2003)CrossRefGoogle Scholar
  35. 35.
    N. Madras, A.L. Gibbs, Y. Zhou, P.W. Zandstra, J.E. Aubin, Stem Cells 20, 230 (2002)CrossRefGoogle Scholar
  36. 36.
    F. Liu, L. Malaval, J.E. Aubin, J. Cell Sci. 116, 1787 (2003)CrossRefGoogle Scholar
  37. 37.
    F. Liu, L. Malaval, J.E. Aubin, Exp. Cell Res. 232, 97 (1997)CrossRefGoogle Scholar
  38. 38.
    O. Frank, M. Heim, M. Jakob, A. Barbero, D. Schafer, I. Bendik, W. Dick, M. Heberer, I. Martin, J. Cell. Biochem. 85, 737 (2002)CrossRefGoogle Scholar
  39. 39.
    J. van den Dolder, A.J. de Ruijter, P.H. Spauwen, J.A. Jansen, Biomaterials 24, 1853 (2003)CrossRefGoogle Scholar
  40. 40.
    J. O’Brien F, B.A. Harley, M.A. Waller, I.V. Yannas, L.J. Gibson, P.J. Prendergast, Technol. Health Care 15, 3 (2007)Google Scholar
  41. 41.
    F. Grinnell, J. Cell Biol. 124, 401 (1994)CrossRefGoogle Scholar
  42. 42.
    A. Rattner, O. Sabido, J. Le, L. Vico, C. Massoubre, J. Frey, A. Chamson, Calcif. Tissue Int. 66, 35 (2000)CrossRefGoogle Scholar
  43. 43.
    S.M. Vickers, L.S. Squitieri, M. Spector, Tissue Eng. 12, 1345 (2006)CrossRefGoogle Scholar
  44. 44.
    D.T. Denhardt, E.H. Burger, C. Kazanecki, S. Krishna, C.M. Semeins, J. Klein-Nulend, Biochem. Biophys. Res. Commun. 288, 448 (2001)CrossRefGoogle Scholar
  45. 45.
    S. Marlovits, G. Striessnig, F. Kutscha-Lissberg, C. Resinger, S.M. Aldrian, V. Vecsei, S. Trattnig, Knee Surg. Sports Traumatol. Arthrosc. 13, 451 (2005)CrossRefGoogle Scholar
  46. 46.
    N. Juncosa-Melvin, G.P. Boivin, M.T. Galloway, C. Gooch, J.R. West, D.L. Butler, Tissue Eng. 12, 681 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Elaine M. Byrne
    • 1
    • 2
    Email author
  • Eric Farrell
    • 1
    • 3
    • 5
  • Louise A. McMahon
    • 1
  • Matthew G. Haugh
    • 1
    • 4
  • Fergal J. O’Brien
    • 1
    • 4
  • Veronica A. Campbell
    • 1
    • 5
  • Patrick J. Prendergast
    • 1
  • Brian C. O’Connell
    • 1
    • 6
  1. 1.Trinity Centre for BioengineeringTrinity CollegeDublin 2Ireland
  2. 2.Department of AnatomyRoyal College of Surgeons in IrelandDublin 2Ireland
  3. 3.Department of Orthopaedic ResearchErasmus MCRotterdamThe Netherlands
  4. 4.Department of AnatomyRoyal College of Surgeons in IrelandDublin 2Ireland
  5. 5.Department of PhysiologyTrinity CollegeDublin 2Ireland
  6. 6.Dublin Dental School and HospitalLincoln PlaceDublin 2Ireland

Personalised recommendations