Macroporous interpenetrating cryogel network of poly(acrylonitrile) and gelatin for biomedical applications

Article

Abstract

Cryogels are supermacroporous gel network formed by cryogelation of appropriate monomers or polymeric precursors at subzero temperature. The beneficial feature of this system is a unique combination of high porosity with adequate mechanical strength and osmotic stability, due to which they are being envisaged as potential scaffold material for various biomedical applications. One of the important aspect of cryogel is simple approach by which they can be synthesized and use of aqueous solvent for their synthesis which make them suitable for different biological applications. Various modifications of the cryogels have been sought which involves coupling of various ligands to its surfaces, grafting of polymer chain to cryogel surface or interpenetrating networks of two or more polymers to form a cryogel which provides diversity of its applications. In the following work we have synthesized full interpenetrating network of polyacrylonitrile (PAN)-gelatin with varied gelatin concentration. The PAN-gelatin cryogel interpenetrating network is macroporous in nature and has high percentage swelling equlibirium in the range of 862–1,200 with a flow rate greater than 10 ml/min, which characterizes the interconnectivity of pores and convective flow within the network. PAN-gelatin interpenetrating cryogel network has good mechanical stability as determined by Young’s modulus which varies from 123 kPa to 819 kPa depending upon the polymer concentration. Moreover they are shown to be biocompatible and support cell growth within the scaffolds.

Notes

Acknowledgements

The work was financially supported from Department of Biotechnology (DBT) and Department of Science and Technology (DST), Govt. of Indian organizations. EJ would like to thank IITK for granting fellowship during the Ph.D. programme. AS gratefully acknowledges the fellowship received from University grants commission, India.

References

  1. 1.
    P. Arvidsson, F.M. Plieva, V.I. Lozinsky, I. Yu Galaev, B. Mattiasson, J. Chromatogr. 986, 275 (2003)CrossRefGoogle Scholar
  2. 2.
    V.I. Lozinsky, I. Yu Galaev, F.M. Plieva, I.N. Savina, H. Jungvid, B. Mattiasson, Trends Biotechnol. 21, 445 (2003)CrossRefPubMedGoogle Scholar
  3. 3.
    A. Kumar, F.M. Plieva, I. Yu Galaev, B. Mattiasson, J. Immunol. Methods 283, 185 (2003)CrossRefPubMedGoogle Scholar
  4. 4.
    V. Bansal, P.K. Roychoudhury, A. Kumar, Int. J. Biol. Sci. 3, 64 (2007)Google Scholar
  5. 5.
    W. Święszkowski, D.N. Ku, H.E.N. Bersee, K.J. Kurzydlowski, Biomaterials 27, 1534 (2006)CrossRefPubMedGoogle Scholar
  6. 6.
    M.B. Dainiak, A. Kumar, I. Yu Galaev, B. Mattiasson, Proc. Natl. Acad. Sci. U.S.A. 103, 849 (2006)CrossRefPubMedADSGoogle Scholar
  7. 7.
    A. Srivastava, E. Jain, A. Kumar, Mat. Sci. Eng. A 464, 93 (2007)CrossRefGoogle Scholar
  8. 8.
    A. Kumar, V. Bansal, K.S. Nandakumar, I. Yu Galaev, P.K. Roychoudhury, R. Holmdahl, Biotechnol. Bioeng. 93, 636 (2006)CrossRefPubMedGoogle Scholar
  9. 9.
    S. Nilsang, K.S. Nandakumar, I. Yu Galaev, S.K. Rakshit, R. Holmdahl, B. Mattaisson, A. Kumar, Biotechnol. Prog. 23, 932 (2007)PubMedGoogle Scholar
  10. 10.
    F.M. Plieva, M. Karlsson, M.-R. Aguilar, D. Gomez, S. Mikhalovsky, I. Yu Galaev, B. Mattiasson, J. Appl. Polym. Sci. 100, 1057 (2006)CrossRefGoogle Scholar
  11. 11.
    F. Plieva, X. Huiting, I. Yu Galaev, B. Bergenståhl, B. Mattiasson, J. Mater. Chem. 16, 4065 (2006)CrossRefGoogle Scholar
  12. 12.
    F.M. Plieva, M. Karlsson, M.-R. Aguilar, D. Gomez, S. Mikhalovsky, I. Yu Galaev, Soft Matter 1, 303 (2005)CrossRefGoogle Scholar
  13. 13.
    P. Dubruel, R. Unger, S.V. Vlierberghe, V. Cnudde, P.J.S. Jacobs, E. Schacht, C.J. Kirkpatrick, Biomacromolecules 8, 338 (2007)CrossRefPubMedGoogle Scholar
  14. 14.
    S.V. Vlierberghe, V. Cnudde, P. Dubruel, B. Masschaele, A. Cosijns, I.D. Paepe, P.J.S. Jacobs, L.V. Hoorebeke, J.P. Remon, E. Schacht, Biomacromolecules 8, 331 (2007)CrossRefPubMedGoogle Scholar
  15. 15.
    A. Kumar, A. Rodriguez-Caballero, F.M. Plieva, I. Yu Galaev, K.S. Nandakumar, M. Kamihira, R. Holmdahl, A. Orfao, B. Mattiasson, J. Mol. Recogn. 18, 84 (2005)CrossRefGoogle Scholar
  16. 16.
    I.N. Savina, B. Mattiasson, I. Yu Galaev, Polymer 46, 9596 (2005)CrossRefGoogle Scholar
  17. 17.
    I.N. Savina, V.C.S. D’Hollander, L.V. Hoorebeke, B. Mattiasson, I. Yu Galaev, F.D. Prez, Soft Matter 3, 1176 (2007)CrossRefGoogle Scholar
  18. 18.
    B.P. Adrados, I. Yu Galaev, K. Nilsson, B. Mattiasson, J. Chromatogr. A 930, 73 (2001)CrossRefPubMedGoogle Scholar
  19. 19.
    V.I. Lozinsky, F.M. Plieva, I. Yu Galaev, B. Mattiasson, Bioseparation 10, 163 (2002)CrossRefGoogle Scholar
  20. 20.
    X.Z. Zhang, R.X. Zhuo, Chem. Phys. 200, 2602 (1999)Google Scholar
  21. 21.
    W. Xue, I.W. Hamely, M.B. Huglin, Polymer 43, 5181 (2002)CrossRefGoogle Scholar
  22. 22.
    J.-P. Chen, C.-T. Lin, J. Biosci. Bioeng. 102, 41 (2006)CrossRefPubMedGoogle Scholar
  23. 23.
    F.M. Plieva, I. Yu Galaev, B. Mattiasson, J. Sep. Sci. 30, 1657 (2007)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Biological Sciences and BioengineeringIndian Institute of Technology KanpurKanpurIndia

Personalised recommendations