Fabrication, chemical composition change and phase evolution of biomorphic hydroxyapatite

Article

Abstract

Biomorphous, highly porous hydroxyapatite (HA) ceramics have been prepared by a combination of a novel biotemplating process and a sol–gel method, using natural plants like cane and pine as biotemplates. A HA sol was first synthesized from triethylphosphate and calcium nitrate used as the phosphorus and calcium precursors, respectively, and infiltrated into the biotemplates, and subsequently they were sintered at elevated temperatures to obtain porous HA ceramics. The microstructural changes, phase and chemical composition evolutions during the biotemplate-to-HA conversion were investigated by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), and Fourier-transform infrared (FT-IR) spectroscopy. The XRD and FT-IR analysis revealed that the dominant phase of the product was HA, which contained a small amount of mixed A/B-type carbonated HA, closely resembling that of human bone apatite. Moreover, the appearance of a small amount of secondary phase CaCO3 seemed unavoidable. The HA was not transformed to the other calcium phosphate phases up to 1400°C, but it contained a trace amount of CaO when sintered at above 1100°C. The possible transformation mechanism was proposed. The SEM observation and mechanical property test showed that as-produced HA ceramics retained the macro-/micro-porous structures of the biotemplates with high precision, and possessed acceptable mechanical strength, which is suggested to be potential scaffolds for bone tissue engineering.

References

  1. 1.
    L.L. Hench, J.M. Polak, Science 295, 1014 (2002). doi:10.1126/science.1067404 CrossRefGoogle Scholar
  2. 2.
    Q.Z. Chen, I.D. Thompson, A.R. Boccaccinni, Biomaterials 27, 2414 (2006). doi:10.1016/j.biomaterials.2005.11.025 CrossRefGoogle Scholar
  3. 3.
    Y.S. Park, K.N. Kim, K.M. Kim, S.H. Choi, C.K. Kim, R.Z. Legeros et al., J. Mater. Sci. 41, 4357 (2006). doi:10.1007/s10853-006-6261-0 CrossRefGoogle Scholar
  4. 4.
    L.L. Hench, J. Am. Ceram. Soc. 74, 1487 (1991). doi:10.1111/j.1151-2916.1991.tb07132.x CrossRefGoogle Scholar
  5. 5.
    J. Moura, L.N. Teixeira, C. Ravagnani, O. Peitl, E.D. Zanotto, M.M. Beloti et al., J. Biomed. Mater. Res. 82A, 545 (2007). doi:10.1002/jbm.a.31165 CrossRefGoogle Scholar
  6. 6.
    G.A. Silva, O.P. Coutinho, P. Ducheyne, I.M. Shapiro, R.L. Reis, Biomaterials 28, 326 (2007)CrossRefGoogle Scholar
  7. 7.
    W. Xu, W.Y. Hu, M.H. Li, C.E. Wen, Mater. Lett. 60, 1575 (2006). doi:10.1016/j.matlet.2005.11.072 CrossRefGoogle Scholar
  8. 8.
    H.W. Kim, Y.M. Kong, C.J. Bae, Y.J. Noh, H.E. Kim, Biomaterials 25, 2919 (2004). doi:10.1016/j.biomaterials.2003.09.074 CrossRefGoogle Scholar
  9. 9.
    S. Ramesh, C.Y. Tan, S.B. Bhaduri, W.D. Teng, Ceram. Int. 33, 1363 (2007). doi:10.1016/j.ceramint.2006.05.009 CrossRefGoogle Scholar
  10. 10.
    S. Kannan, J.H.G. Rocha, S. Agathopoulos, J.M.F. Ferreira, Acta Biomater. 3, 243 (2007). doi:10.1016/j.actbio.2006.09.006 CrossRefGoogle Scholar
  11. 11.
    R.R. Ramachandra, H.N. Roopa, T.S. Kannan, J. Mater. Sci. Mater. Med. 8, 511 (1997). doi:10.1023/A:1018586412270 CrossRefGoogle Scholar
  12. 12.
    C. Mochales, H. Ei Briak-Benabdeslam, M.P. Ginebra, A. Terol, J.A. Planell, P. Boudeville, Biomaterials 25, 1151 (2004). doi:10.1016/j.biomaterials.2003.08.002 CrossRefGoogle Scholar
  13. 13.
    E.M. Rivera, M. Araiza, W. Brostow, V.M. Castano, J.R. Diaz-Estrada, R. Hernandez et al., Mater. Lett. 41, 128 (1999). doi:10.1016/S0167-577X(99)00118-4 CrossRefGoogle Scholar
  14. 14.
    H. Eshtiagh-Hosseini, M.R. Housaindokht, M. Chahkandi, Mater. Chem. Phys. 106, 310 (2007). doi:10.1016/j.matchemphys.2007.06.002 CrossRefGoogle Scholar
  15. 15.
    J.C. Elliott, D.W. Holcomb, R.A. Young, Calcif. Tissue Int. 37, 372 (1985). doi:10.1007/BF02553704 CrossRefGoogle Scholar
  16. 16.
    E. Jabbarzadeh, T. Jiang, M. Deng, L.S. Nair, Y.M. Khan, C.T. Laurencin, Biotechnol. Bioeng. 98, 1094 (2007). doi:10.1002/bit.21495 CrossRefGoogle Scholar
  17. 17.
    M.M.C.G. Silva, L.A. Cyster, J.J.A. Barry, X.B. Yang, R.O.C. Oreffo, D.M. Grant et al., Biomaterials 27, 5909 (2006). doi:10.1016/j.biomaterials.2006.08.010 CrossRefGoogle Scholar
  18. 18.
    C. Vitale-Brovarone, E. Verné, L. Robiglio, P. Appendino, F. Bassi, G. Martinasso et al., Acta Biomater. 3, 199 (2007). doi:10.1016/j.actbio.2006.07.012 CrossRefGoogle Scholar
  19. 19.
    J.M. Williams, A. Adewunmi, R.M. Schek, C.L. Flanagan, P.H. Krebsbach, S.E. Feinberg et al., Biomaterials 26, 4817 (2005). doi:10.1016/j.biomaterials.2004.11.057 CrossRefGoogle Scholar
  20. 20.
    H.W. Kim, H.E. Kim, J.C. Knowles, Adv. Funct. Mater. 16, 1529 (2006). doi:10.1002/adfm.200500750 CrossRefGoogle Scholar
  21. 21.
    W. Helen, C.L.R. Merry, J.J. Blaker, J.E. Gough, Biomaterials 28, 2010 (2007). doi:10.1016/j.biomaterials.2007.01.011 CrossRefGoogle Scholar
  22. 22.
    D. Tadic, F. Beckmann, K. Schwarz, M. Epple, Biomaterials 25, 3335 (2004). doi:10.1016/j.biomaterials.2003.10.007 CrossRefGoogle Scholar
  23. 23.
    C.V. Brovarone, E. Verné, P. Appendino, J. Mater. Sci. Mater. Med. 17, 1069 (2006). doi:10.1007/s10856-006-0533-8 CrossRefGoogle Scholar
  24. 24.
    S. Sánchez-Salcedo, A. Nieto, M. Vallet-Regí, Chem. Eng. J. 137, 62 (2008). doi:10.1016/j.cej.2007.09.011 CrossRefGoogle Scholar
  25. 25.
    M. Shin, H. Abukawa, M.J. Troulis, J.P. Vacanti, J. Biomed. Mater. Res. 84A, 702 (2008). doi:10.1002/jbm.a.31392 CrossRefGoogle Scholar
  26. 26.
    H.R. Ramay, M.Q. Zhang, Biomaterials 24, 3293 (2003). doi:10.1016/S0142-9612(03)00171-6 CrossRefGoogle Scholar
  27. 27.
    M. Martina, G. Subramanyam, J.C. Weaver, D.W. Hutmacher, D.E. Morse, S. Valiyaveettil, Biomaterials 26, 5609 (2005). doi:10.1016/j.biomaterials.2005.02.011 CrossRefGoogle Scholar
  28. 28.
    A. Worth, M. Mucalo, G. Horne, W. Bruce, H. Burbidge, Clin. Oral Implants Res. 16, 379 (2005). doi:10.1111/j.1600-0501.2005.01113.x CrossRefGoogle Scholar
  29. 29.
    R. Murugan, S. Ramakrishna, Biomaterials 25, 3073 (2004). doi:10.1016/j.biomaterials.2003.09.089 CrossRefGoogle Scholar
  30. 30.
    K.S. Vecchio, X. Zhang, J.B. Massie, M. Wang, C.W. Kim, Acta Biomater. 3, 910 (2007). doi:10.1016/j.actbio.2007.06.003 CrossRefGoogle Scholar
  31. 31.
    P.J. Walsh, F.J. Buchanan, M. Dring, C. Maggs, S. Bell, G.M. Walker, Chem. Eng. J. (2007). doi:10.1016/j.cej.2007.10.016
  32. 32.
    B. Ben-Nissan, A. Milev, R. Vago, Biomaterials 25, 4971 (2004). doi:10.1016/j.biomaterials.2004.02.006 CrossRefGoogle Scholar
  33. 33.
    C.Y. Ooi, M. Hamdi, S. Ramesh, Ceram. Int. 33, 1171 (2007). doi:10.1016/j.ceramint.2006.04.001 CrossRefGoogle Scholar
  34. 34.
    J.M. Qian, J.P. Wang, G.Y. Hou, G.J. Qiao, Z.Z. Jin, Scr. Mater. 53, 1363 (2005). doi:10.1016/j.scriptamat.2005.08.029 CrossRefGoogle Scholar
  35. 35.
    C.R. Rambo, H. Sieber, Adv. Mater. 17, 1088 (2005). doi:10.1002/adma.200401049 CrossRefGoogle Scholar
  36. 36.
    M. Luo, J.Q. Gao, X. Zhang, G.Y. Hou, J.F. Yang, D. Ouyang et al., J. Mater. Sci. 42, 3761 (2007). doi:10.1007/s10853-006-0425-9 CrossRefGoogle Scholar
  37. 37.
    A.H. Murdoch, K.J. Mathias, D.E.T. Shepherd, Biomed. Mater. Eng. 14, 1 (2004)Google Scholar
  38. 38.
    A. Herzog, U.F. Vogt, S. Siegmann, O. Beffort, Adv. Eng. Mater. 8, 980 (2006). doi:10.1002/adem.200600121 CrossRefGoogle Scholar
  39. 39.
    C.R. Rambo, F.A. Muller, L. Muller, H. Sieber, I. Hofmann, P. Greil, Mater. Sci. Eng. C 26, 92 (2006). doi:10.1016/j.msec.2005.06.003 CrossRefGoogle Scholar
  40. 40.
    P. González, J. Serra, S. Liste, S. Chiussi, B. León, M. Pérez-Amor et al., Biomaterials 24, 4827 (2003). doi:10.1016/S0142-9612(03)00405-8 CrossRefGoogle Scholar
  41. 41.
    A. de Carlos, J.P. Borrajo, J. Serra, P. González, B. León, J. Mater. Sci. Mater. Med. 17, 523 (2006). doi:10.1007/s10856-006-8935-1 CrossRefGoogle Scholar
  42. 42.
    J. Colville, P. Baas, V. Hoikka, K. Vainio, IAWA Bull. 1, 3 (1979)Google Scholar
  43. 43.
    H. Kristen, P. Bosch, H. Bednar Jr, PLENK. Arch. Orthop. Unfallchir. 89, 1 (1977). doi:10.1007/BF00414821
  44. 44.
    K.A. Gross, E. Ezer`Ietis, J. Biomed. Mater. Res. 64A, 672 (2003). doi:10.1002/jbm.a.10437 CrossRefGoogle Scholar
  45. 45.
    A.J. Aho, J. Rekola, J. Matinlinna, J. Gunn, T. Tirri, P. Viitaniemi et al., J. Biomed. Mater. Res. 83B, 64 (2007)CrossRefGoogle Scholar
  46. 46.
    S.N. Nazhat, E.A. Abou Neel, A. Kidane, I. Ahmed, C. Hope, M. Kershaw et al., Biomacromolecules 8, 543 (2007). doi:10.1021/bm060715f CrossRefGoogle Scholar
  47. 47.
    I. Martin, D. Wendt, M. Heberer, Trends Biotechnol. 22(2), 80 (2004). doi:10.1016/j.tibtech.2003.12.001 CrossRefGoogle Scholar
  48. 48.
    F. Rose, Q.P. Hou, R.O.C. Oreffo, J. Pharm. Pharmacol. 56(4), 415 (2004). doi:10.1211/0022357023312 CrossRefGoogle Scholar
  49. 49.
    J.J.A. Barry, D. Howard, K.M. Shakesheff, S.M. Howdle, M.R. Alexander, Adv. Mater. 18, 1406 (2006). doi:10.1002/adma.200502719 CrossRefGoogle Scholar
  50. 50.
    P.X. Ma, Adv. Drug Deliv. Rev. 60, 1848 (2008). doi:10.1016/j.addr.2007.08.041 CrossRefGoogle Scholar
  51. 51.
    J.M. Taboas, R.D. Maddox, P.H. Krebsbach, S.J. Hollister, Biomaterials 24, 181 (2003). doi:10.1016/S0142-9612(02)00276-4 CrossRefGoogle Scholar
  52. 52.
    F.C.G. de Sousa, J.R.G. Evans, J. Am. Ceram. Soc. 86, 517 (2003). doi:10.1111/j.1151-2916.2003.tb03332.x CrossRefGoogle Scholar
  53. 53.
    Y.H. Koh, H.W. Kim, H.E. Kim, J.W. Halloran, J. Am. Ceram. Soc. 85, 2578 (2002). doi:10.1111/j.1151-2916.2002.tb00500.x CrossRefGoogle Scholar
  54. 54.
    S. Stokols, M.H. Tuszynski, Biomaterials 27, 443 (2006). doi:10.1016/j.biomaterials.2005.06.039 CrossRefGoogle Scholar
  55. 55.
    T.T. Yu, M.S. Shoichet, Biomaterials 26, 1507 (2005). doi:10.1016/j.biomaterials.2004.05.012 CrossRefGoogle Scholar
  56. 56.
    A.J. Wang, Q. Ao, W.L. Cao, M.Z. Yu, Q. He, L.J. Kong et al., J. Biomed. Mater. Res. 79A, 36 (2006). doi:10.1002/jbm.a.30683 CrossRefGoogle Scholar
  57. 57.
    C. Rey, B. Collins, T. Goehl, I.R. Dickson, M.J. Glimcher, Calcif. Tissue Int. 45, 157 (1989). doi:10.1007/BF02556059 CrossRefGoogle Scholar
  58. 58.
    E. Landi, A. Tampieri, G. Celotti, S. Sprio, J. Eur. Ceram. Soc. 20, 2377 (2000). doi:10.1016/S0955-2219(00)00154-0 CrossRefGoogle Scholar
  59. 59.
    H.W. Kim, L.H. Li, Y.H. Koh, J.C. Knowles, H.E. Kim, J. Am. Ceram. Soc. 87, 1939 (2004). doi:10.1111/j.1151-2916.2004.tb07493.x CrossRefGoogle Scholar
  60. 60.
    Y.X. Sun, G.S. Guo, D.L. Tao, Z.H. Wang, J. Phys. Chem. Solids 68, 373 (2007). doi:10.1016/j.jpcs.2006.11.026 CrossRefGoogle Scholar
  61. 61.
    J.C. Hornez, F. Chai, F. Monchau, N. Blanchemain, M. Descamps, H.F. Hildebrand, Biomol. Eng. 24, 505 (2007). doi:10.1016/j.bioeng.2007.08.015 CrossRefGoogle Scholar
  62. 62.
    A. Stoch, W. Jastrzębski, E. Długoń, W. Lejda, B. Trybalska, G.J. Stoch et al., J. Mol. Struct. 744–747, 633 (2005). doi:10.1016/j.molstruc.2004.10.080 CrossRefGoogle Scholar
  63. 63.
    S.R. Ramanan, R. Venkatesh, Mater. Lett. 58, 3320 (2004). doi:10.1016/j.matlet.2004.06.030 CrossRefGoogle Scholar
  64. 64.
    C.B. Baddiel, E.E. Berry, Spectrochim Acta [A] 22, 1407 (1966)Google Scholar
  65. 65.
    S. Chakraborty, S. Bag, S. Pal, A.K. Mukherjee, J. Appl. Cryst. 39, 385 (2006). doi:10.1107/S0021889806010351 CrossRefGoogle Scholar
  66. 66.
    A. Sinha, S. Nayar, A. Agrawal, D. Bhattacharyya, P. Ramachandrarao, J. Am. Ceram. Soc. 86, 357 (2003). doi:10.1111/j.1151-2916.2003.tb00024.x Google Scholar
  67. 67.
    B. Su, G.Q. Zhang, X.D. Yu, C.T. Wang, J. Univ. Sci. Technol. Beijing 13(5), 469 (2006)Google Scholar
  68. 68.
    M. Markovic, B.O. Fowler, M.S. Tung, J. Res. Natl. Inst. Stand. Technol. 109, 553 (2004)Google Scholar
  69. 69.
    Y.J. Wang, X.J. Liu, K. Wei, S.H. Zhang, L. Ren, N.R. Zhao et al., J. Chin. Ceram. Soc 35, 1200 (2007)Google Scholar
  70. 70.
    J. Chakraborty, M.K. Sinha, D. Basu, J. Am. Ceram. Soc. 90, 1258 (2007). doi:10.1111/j.1551-2916.2007.01596.x CrossRefGoogle Scholar
  71. 71.
    A. Bigi, E. Boanini, K. Rubini, J. Solid State Chem. 177, 3092 (2004). doi:10.1016/j.jssc.2004.05.018 CrossRefGoogle Scholar
  72. 72.
    M. Manso, M. Langlet, C. Jiménez, J.M. Martínez-Duart, Biomol. Eng. 19, 63 (2002). doi:10.1016/S1389-0344(02)00012-6 CrossRefGoogle Scholar
  73. 73.
    Q.X. Zhu, J.Q. Wu, J. Chin. Ceram. Soc 35(7), 866 (2007)Google Scholar
  74. 74.
    W.H. Emerson, E.E. Fischer, Arch. Oral Biol. 7, 671 (1962). doi:10.1016/0003-9969(62)90116-4 CrossRefGoogle Scholar
  75. 75.
    C.F. Li, F.T. Meng, Mater. Lett. 62, 932 (2008). doi:10.1016/j.matlet.2007.07.013 CrossRefGoogle Scholar
  76. 76.
    D.M. Liu, Q.Z. Yang, T. Troczynski, W.J. Tseng, Biomaterials 23, 1679 (2002). doi:10.1016/S0142-9612(01)00295-2 CrossRefGoogle Scholar
  77. 77.
    X.S. Dai, S. Shivkumar, Mater. Sci. Eng. C 28, 336 (2008). doi:10.1016/j.msec.2007.04.010 CrossRefGoogle Scholar
  78. 78.
    I.S. Kim, P.N. Kumta, Mater. Sci. Eng. B 111, 232 (2004). doi:10.1016/j.mseb.2004.04.011 CrossRefGoogle Scholar
  79. 79.
    M.F. Hsieh, L.H. Perng, T.S. Chin, H.G. Perng, Biomaterials 22, 2601 (2001). doi:10.1016/S0142-9612(00)00448-8 CrossRefGoogle Scholar
  80. 80.
    J.X. Zhang, H. Tanaka, F. Ye, D.L. Jiang, M. Iwasa, Mater. Chem. Phys. 101, 69 (2007). doi:10.1016/j.matchemphys.2006.02.016 CrossRefGoogle Scholar
  81. 81.
    P.E. Wang, T.K. Chaki, J. Mater. Sci. Mater. Med. 4, 150 (1993). doi:10.1007/BF00120384 CrossRefGoogle Scholar
  82. 82.
    S. Raynaud, E. Champion, D. Bernache-Assollant, P. Thomas, Biomaterials 23, 1065 (2002). doi:10.1016/S0142-9612(01)00218-6 CrossRefGoogle Scholar
  83. 83.
    T.K. Anee, M. Ashok, M. Palanichamy, S.N. Kalkura, Mater. Chem. Phys. 80, 725 (2003). doi:10.1016/S0254-0584(03)00116-0 CrossRefGoogle Scholar
  84. 84.
    J.P. Lafon, E. Champion, D. Bernache-Assollant, J. Eur. Ceram. Soc. 28, 139 (2008). doi:10.1016/j.jeurceramsoc.2007.06.009 CrossRefGoogle Scholar
  85. 85.
    D.M. Liu, T. Troczynski, W.J. Tseng, Biomaterials 23, 1227 (2002). doi:10.1016/S0142-9612(01)00242-3 CrossRefGoogle Scholar
  86. 86.
    G. Kordas, C.C. Trapalis, J. Sol–Gel Sci. Technol. 9, 17 (1997)Google Scholar
  87. 87.
    D.M. Liu, T. Troczynski, W.J. Tseng, Biomaterials 22, 1721 (2001). doi:10.1016/S0142-9612(00)00332-X CrossRefGoogle Scholar
  88. 88.
    J.A.M. Van Der Houwen, G. Cressey, B.A. Cressy, E. Valsami-Jones, J. Cryst. Growth 249, 572 (2003). doi:10.1016/S0022-0248(02)02227-3 CrossRefGoogle Scholar
  89. 89.
    M.F. Hsieh, L.H. Perng, T.S. Chin, Mater. Chem. Phys. 74, 245 (2002). doi:10.1016/S0254-0584(01)00474-6 CrossRefGoogle Scholar
  90. 90.
    K. Hwang, J. Song, B. Kang, Y. Park, Surf. Coat. Tech. 123, 252 (2000). doi:10.1016/S0257-8972(99)00512-5 CrossRefGoogle Scholar
  91. 91.
    R.Z. Legeros, O.R. Trautz, J.P. Legeros, E. Klein, W.P. Shirra, Science 155, 1409 (1967). doi:10.1126/science.155.3768.1409 CrossRefGoogle Scholar
  92. 92.
    D.M. Liu, Q.Z. Yang, T. Troczynski, Biomaterials 23, 691 (2002). doi:10.1016/S0142-9612(01)00157-0 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and EngineeringXi’an Jiaotong UniversityXi’anChina

Personalised recommendations