Journal of Materials Science: Materials in Medicine

, Volume 19, Issue 11, pp 3399–3409 | Cite as

Silkworm and spider silk scaffolds for chondrocyte support

  • Kris Gellynck
  • Peter C. M. Verdonk
  • Els Van Nimmen
  • Karl F. Almqvist
  • Tom Gheysens
  • Gustaaf Schoukens
  • Lieva Van Langenhove
  • Paul Kiekens
  • Johan Mertens
  • Gust Verbruggen


Objective To create scaffolds with silkworm cocoon, spider egg sac and spider dragline silk fibres and examine their use for chondrocyte attachment and support. Methods Three different kinds of scaffolds were developed with Bombyx mori cocoon, Araneus diadematus egg sac and dragline silk fibres. The attachment of human articular cartilage cells were investigated on these bioprotein matrices. The chondrocytes produced an extracellular matrix which was studied by immunostaining. Moreover, the compression behaviour in relation to the porosity was studied. Results The compression modulus of a silkworm silk scaffold was related to its porosity. Chondrocytes were able to attach and to grow on the different fibres and in the scaffolds for several weeks while producing extracellular matrix products. Conclusion Porous scaffolds can be made out of silkworm and spider silk for cartilage regeneration. Mechanical properties are related to porosity and pore size of the construct. Cell spreading and cell expression depended on the porosity and pore-size.


Alginate Silk Fibroin Articular Chondrocytes Silk Fibre Spider Silk 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This project was funded by the BOF (Special research Fund: B/03191/01, fund IV1) of the University of Ghent, and by FWO Grant 3G026305.


  1. 1.
    A. Aroen, S. Loken, S. Heir, E. Alvik, A. Ekeland, O.G. Granlund, Articular cartilage lesions in 993 consecutive knee arthroscopies. Am. J. Sports Med. 32, 211–215 (2004)CrossRefGoogle Scholar
  2. 2.
    J.A. Buckwalter, H.J. Mankin, Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instr. Course Lect. 47, 487–504 (1998)Google Scholar
  3. 3.
    E.B. Hunziker, Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthr. Cartilage 10, 432–463 (2002)CrossRefGoogle Scholar
  4. 4.
    L.A. Solchaga, V.M. Goldberg, A.I. Caplan, Cartilage regeneration using principles of tissue engineering. Clin. Orthop. 391(Suppl), S161–S170 (2001)Google Scholar
  5. 5.
    L. Peterson, T. Minas, M. Brittberg, A. Nilsson, E. Sjogren-Jansson, A. Lindahl, Two- to 9-year outcome after autologous chondrocyte transplantation of the knee. Clin. Orthop. Relat. Res. 374, 212–234 (2000)CrossRefGoogle Scholar
  6. 6.
    M. Brittberg, L. Peterson, E. Sjogren-Jansson, T. Tallheden, A. Lindahl, Articular cartilage engineering with autologous chondrocyte transplantation. A review of recent developments. J. Bone Joint Surg. Am. 85(A Suppl 3), 109–115 (2003)Google Scholar
  7. 7.
    A. Ferruzzi, P. Calderoni, B. Grigolo, G. Gualtieri, Autologous articular chondrocytes implantation: indications and results in the treatment of articular cartilage lesions of the knee. Chir. Organi. Mov. 89, 125–134 (2004)Google Scholar
  8. 8.
    R.D. Coutts, R.M. Healey, R. Ostrander, R.L. Sah, R. Goomer, D. Amiel, Matrices for cartilage repair. Clin. Orthop. 391(Suppl), S271–S279 (2001)Google Scholar
  9. 9.
    L. Lu, X. Zhu, R.G. Valenzuela, B.L. Currier, M.J. Yaszemski, Biodegradable polymer scaffolds for cartilage tissue engineering. Clin. Orthop. 391(Suppl), S251–S270 (2001)Google Scholar
  10. 10.
    L. Galois, A.M. Freyria, L. Grossin, P. Hubert, D. Mainard, D. Herbage, J.F. Stoltz, P. Netter, E. Dellacherie, E. Payan, Cartilage repair: surgical techniques and tissue engineering using polysaccharide- and collagen-based biomaterials. Biorheology 41, 433–443 (2004)Google Scholar
  11. 11.
    A. Subramanian, H.Y. Lin, D. Vu, G. Larsen, Synthesis and evaluation of scaffolds prepared from chitosan fibres for potential use in cartilage tissue engineering. Biomed. Sci. Instrum. 40, 117–122 (2004)Google Scholar
  12. 12.
    D.L. Nettles, T.P. Vail, M.T. Morgan, M.W. Grinstaff, L.A. Setton, Photocrosslinkable hyaluronan as a scaffold for articular cartilage repair. Ann. Biomed. Eng. 32, 391–397 (2004)CrossRefGoogle Scholar
  13. 13.
    W. Xia, W. Liu, L. Cui, Y. Liu, W. Zhong, D. Liu, J. Wu, K. Chua, Y. Cao, Tissue engineering of cartilage with the use of chitosan-gelatin complex scaffolds. J. Biomed. Mater. Res. 15, 373–380 (2004)CrossRefGoogle Scholar
  14. 14.
    N. Veilleux, M. Spector, Effects of FGF-2 and IGF-1 on adult canine articular articular chondrocytes in type II collagen-glycosaminoglycan scaffolds in vitro. Osteoarthr. Cartilage 13, 278–286 (2005)CrossRefGoogle Scholar
  15. 15.
    Z. Ma, C. Gao, Y. Gong, J. Shen, Cartilage tissue engineering PLLA scaffold with surface immobilized collagen and basic fibroblast growth factor. Biomaterials 26, 1253–1259 (2005)CrossRefGoogle Scholar
  16. 16.
    P.M. van der Kraan, P. Buma, T. van Kuppevelt, W.B. van den Berg, Interaction of articular chondrocytes, extracellular matrix and growth factors: relevance for articular cartilage tissue engineering. Osteoarthr. Cartilage 10, 631–637 (2002)CrossRefGoogle Scholar
  17. 17.
    J.M. Moran, D. Pazzano, L.J. Bonassar, Characterization of polylactic acid-polyglycolic acid composites for cartilage tissue engineering. Tissue Eng. 9, 63–70 (2003)CrossRefGoogle Scholar
  18. 18.
    K.F. Almqvist, L. Wang, J. Wang, D. Baeten, M. Cornelissen, R. Verdonk, E.M. Veys, G. Verbruggen, Culture of articular chondrocytes in alginate surrounded by fibrin gel: characteristics of the cells over a period of eight weeks. Ann. Rheum. Dis. 60, 781–790 (2001)CrossRefGoogle Scholar
  19. 19.
    S. Hsu, S. Wen Whu, S. Hsieh, C. Tsai, D. Chanhen Chen, T. Tan, Evaluation of chitosan-alginate-hyaluronate complexes modified by an RGD-containing protein as tissue-engineering scaffolds for cartilage regeneration. Artif. Organs 28, 693–703 (2004)CrossRefGoogle Scholar
  20. 20.
    G.H. Altman, R.L. Horan, H.H. Lu, J. Moreau, I. Martin, J.C. Richmond, D.L. Kaplan, Silk matrix for tissue engineered anterior cruciate ligaments. Biomaterials 23, 4131–4141 (2002)CrossRefGoogle Scholar
  21. 21.
    C.M. Wen, S.T. Ye, L.X. Zhou, Y. Yu, Silk-induced asthma in children: a report of 64 cases. Ann. Allergy 65, 375–378 (1990)Google Scholar
  22. 22.
    M. Santin, A. Motta, G. Freddi, M. Cannas, In vitro evaluation of the inflammatory potential of the silk fibroin. J. Biomed. Mater. Res. 46, 382–389 (1999)CrossRefGoogle Scholar
  23. 23.
    B. Panilaitis, G.H. Altman, J. Chen, H.J. Jin, V. Karageorgiou, D.L. Kaplan, Macrophage responses to silk. Biomaterials 24, 3079–3085 (2003)CrossRefGoogle Scholar
  24. 24.
    R.L. Horan, K. Antle, A.L. Collette, Y. Wang, J. Huang, J.E. Moreau, V. Volloch, D.L. Kaplan, G.H. Altman, In vitro degradation of silk fibroin. Biomaterials 26, 3385–3393 (2005)CrossRefGoogle Scholar
  25. 25.
    N. Minoura, S. Aiba, Y. Gotoh, M. Tsukada, Y. Imai, Attachment and growth of cultured fibroblast cells on silk protein matrices. J. Biomed. Mater. Res. 29, 1215–1221 (1995)CrossRefGoogle Scholar
  26. 26.
    M.Z. Li, S.Z. Lu, Z.Y. Wu, Study on porous silk fibroin materials 1: fine structure of freeze-dried silk fibroin. J. Appl. Polym. Sci. 79, 2185–2191 (2001)CrossRefGoogle Scholar
  27. 27.
    M.Z. Li, Z. Wu, C. Zhang, S. Lu, H. Yan, D. Huang, H. Ye, Study on porous silk fibroin materials II. Preparation and characteristics of spongy porous silk fibroin materials. J. Appl. Polym. Sci. 79, 2192–2199 (2001)CrossRefGoogle Scholar
  28. 28.
    R. Nazarov, H.J. Jin, D.L. Kaplan, Porous 3-D scaffolds from regenerated silk fibroin. Biomacromolecules 5, 718–726 (2004)CrossRefGoogle Scholar
  29. 29.
    U.J. Kim, J. Park, H.J. Kim, M. Wada, D.L. Kaplan, Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin. Biomaterials 26, 2775–2785 (2005)CrossRefGoogle Scholar
  30. 30.
    F. Vollrath, Biology of spider silk. Int. J. Biol. Macromol. 24, 81–88 (1999)CrossRefGoogle Scholar
  31. 31.
    (a) F. Vollrath, Strength and structure of spiders’ silks. J. Biotechnol. 74, 67–83 (2000); (b) E. Servoli, D. Maniglio, A. Motta, R. Predazzer, C. Migliaresi, Surface properties of silk fibroin films and their interaction with fibroblasts. Macromol. Biosci. 5(12), 1175–1183 (2005)Google Scholar
  32. 32.
    M. Tsukada, G. Freddi, P. Monti, A. Bertoluzza, N. Kasai, Structure and molecular conformation opf Tussah silk fibroin films: effect of methanol. J. Polym. Sci. 33, 1995–2001 (1995)Google Scholar
  33. 33.
    K. Gellynck, P. Verdonk, R. Forsyth, K.F. Almqvist, E. Van Nimmen, T. Gheysens, L. Van Langenhove, P. Kiekens, J. Mertens, G. Verbruggen, Biocompatibility and biodegradability of spider egg sac silk. J. Mater. Sci. Mater. Med. (2008, in press)Google Scholar
  34. 34.
    M. Cornelissen, G. Verbruggen, A.M. Malfait, E.M. Veys, C. Broddelez, L. De Ridder, The study of representative populations of native aggrecan aggregates synthesized by human chondrocytes in vitro. J. Tiss. Cult. Meth. 15, 139–146 (1993)CrossRefGoogle Scholar
  35. 35.
    L. Wang, G. Verbruggen, K.F. Almqvist, D. Elewaut, C. Broddelez, E.M. Veys, Flow cytometric analysis of the human articular chondrocyte phenotype. Osteoarthr. Cartilage 9, 73–84 (2001)CrossRefGoogle Scholar
  36. 36.
    C. Sartori, D.S. Finch, B. Ralph, K. Gilding, Determination of the cation content of alginate thin films by FTIR spectroscopy. Polymer 38, 43–51 (1997)CrossRefGoogle Scholar
  37. 37.
    C. Riekel, B. Madsen, D. Knight, F. Vollrath, X-ray diffraction on spider silk during controlled extrusion under a synchrotron radiation X-ray beam. Biomacromolecules 1, 622–626 (2000)CrossRefGoogle Scholar
  38. 38.
    E. Van Nimmen, K. Gellynck, D. De Bakker, T. Gheysens, J. Mertens, P. Kiekens, L. Van Langenhove, Research and development of spider silk for biomedical applications. in Proceedings SEM Annual Conference on Experimental and Applied Mechanics, Biological Inspired and multi-Functional Materials and Systems; Milwaukee, Wisconsin, USA, 10–12 June 2002Google Scholar
  39. 39.
    C. Dicko, D. Knight, J.M. Kenney, F. Vollrath, Conformational polymorphism, stability and aggregation in spider dragline silks proteins. Int. J. Biol. Macromol. 36(4), 215–224 (2005)CrossRefGoogle Scholar
  40. 40.
    H. Liu, Y.W. Lee, M.F. Dean, Re-expression of differentiated proteoglycan phenotype by dedifferentiated human chondrocytes during culture in alginate beads. Biochim. Biophys. Acta 1425(3), 505–515 (1998)Google Scholar
  41. 41.
    C.J. Hunter, J.K. Mouw, M.E. Levenston, Dynamic compression of chondrocyte-seeded fibrin gels: effects on matrix accumulation and mechanical stiffness. Osteoarthr. Cartilage 12, 117–130 (2004)CrossRefGoogle Scholar
  42. 42.
    P.A. Hardy, A.C. Ridler, C.B. Chiarot, D.B. Plewes, R.M. Henkelman, Imaging articular cartilage under compression—cartilage elastography. Magn. Reson. Med. 53(5), 1065–1073 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Kris Gellynck
    • 1
  • Peter C. M. Verdonk
    • 2
  • Els Van Nimmen
    • 1
  • Karl F. Almqvist
    • 2
  • Tom Gheysens
    • 3
  • Gustaaf Schoukens
    • 1
  • Lieva Van Langenhove
    • 1
  • Paul Kiekens
    • 1
  • Johan Mertens
    • 3
  • Gust Verbruggen
    • 4
  1. 1.Faculty of Engineering, Department of TextilesGhent UniversityZwijnaardeBelgium
  2. 2.Department of Orthopaedic SurgeryGhent University HospitalGhentBelgium
  3. 3.Faculty of Sciences, Department of Biology, Terrestrial EcologyGhent UniversityGhentBelgium
  4. 4.Department of RheumatologyGhent University HospitalGhentBelgium

Personalised recommendations