Journal of Materials Science: Materials in Medicine

, Volume 19, Issue 10, pp 3279–3285

The influence of surface mineral and osteopontin on the formation and function of murine bone marrow-derived osteoclasts

  • Rupak M. Rajachar
  • Anh Q. Truong
  • Cecilia M. Giachelli
Article

Abstract

The phosphorylated glycoprotein osteopontin (OPN) is involved in the regulation of biomineralization under normal and pathological conditions. Its actions include inhibiting apatite crystal growth and promoting the formation and function of mineral resorbing cells, including osteoclasts (OCL). The purpose of this study was to develop stable apatitic mineral surfaces and determine their influence on OCL formation and mineral resorption from bone marrow macrophages derived from OPN wild-type (OPN+/+) and OPN deficient (OPN−/−) mice. We demonstrated that these mineral coatings were stable and supported bone marrow-derived macrophage differentiation to OCL under our culture conditions. Macrophages harvested from OPN−/− mice had a greater capacity to form OCL than macrophages from OPN+/+ mice when allowed to differentiate on tissue culture plastic. In contrast, when allowed to differentiate on a mineral surface, no difference in OCL formation was observed. Interestingly, OPN+/+ OCL were more efficient at mineral dissolution than OPN−/− OCL, and this difference was observed regardless of differentiating surface. Our results suggest that mineralized substrates as well as ability to synthesize OPN both control OCL function in our model system. The exact nature of these effects may be dependent on variables related to mineral substrate presentation.

References

  1. 1.
    S. Weiner, L. Addadi, Science 298, 375 (2002)CrossRefGoogle Scholar
  2. 2.
    A.L. Boskey, Calcif. Tissue Int. 72, 533 (2003)CrossRefGoogle Scholar
  3. 3.
    G.K. Hunter, P.V. Hauschka, A.R. Poole, L.C. Rosenberg, H.A. Goldberg, Biochem. J. 317, 59 (1996)Google Scholar
  4. 4.
    L. Addadi, S. Raz, S. Weiner, Adv. Mater. 15, 959 (2003)CrossRefGoogle Scholar
  5. 5.
    J.L. Kirschvink, J.W. Hagadorn, in The Biomineralization of Nano- and Micro-structures, ed. by E. Bauerlein (Wiley-VCH Verlag GmbH, Weinheim, Germany, 2000), p. 139Google Scholar
  6. 6.
    B.A. Gotliv, L. Addadi, S. Weiner, Chembiochem 4, 522 (2003)CrossRefGoogle Scholar
  7. 7.
    J. Moradian-Oldak, F. Frolow, L. Addadi, S. Weiner, Proc. R. Soc. Lond., B, Biol. Sci. 247, 47 (1992)CrossRefGoogle Scholar
  8. 8.
    J.G. Steele, B.A. Dalton, G. Johnson, P.A. Underwood, J. Biomed. Mater. Res. 27, 927 (1993)CrossRefGoogle Scholar
  9. 9.
    C.M. Giachelli, S. Steitz, Matrix Biol. 19, 615 (2000)CrossRefGoogle Scholar
  10. 10.
    L. Addadi, S. Weiner, M. Geva, Z. Kardiol. 90, 92 (2001)CrossRefGoogle Scholar
  11. 11.
    E. Salih, J. Wang, J. Mah, R. Fluckiger, Biochem. J. 364, 465 (2002)CrossRefGoogle Scholar
  12. 12.
    E. Salih, R. Fluckiger, J. Biol. Chem. 279, 19808 (2004)CrossRefGoogle Scholar
  13. 13.
    M.Y. Speer, C.M. Giachelli, Cardiovasc. Pathol. 13, 63 (2004)CrossRefGoogle Scholar
  14. 14.
    R. Ohri, E. Tung, R. Rajachar, C.M. Giachelli, Calcif. Tissue Int. 11, 11 (2005)Google Scholar
  15. 15.
    L. Liaw, V. Lindner, S.M. Schwartz, A.F. Chambers, C.M. Giachelli, Circ. Res. 77, 665 (1995)Google Scholar
  16. 16.
    M. Chellaiah, K. Hruska, Mol. Biol. Cell. 7, 743 (1996)Google Scholar
  17. 17.
    S.A. Steitz, M.Y. Speer, M.D. Mckee, L. Liaw, M. Almeida, H. Yang, C.M. Giachelli, Am. J. Pathol. 161, 2035 (2002)Google Scholar
  18. 18.
    M.A. Chellaiah, N. Kizer, R. Biswas, U. Alvarez, J. Strauss-Schoenberger, L. Rifas, S.R. Rittling, D.T. Denhardt, K.A. Hruska, Mol. Biol. Cell. 14, 173 (2003)CrossRefGoogle Scholar
  19. 19.
    K.A. Hruska, F. Rolnick, M. Huskey, U. Alvarez, D. Cheresh, Endocrinology 136, 2984 (1995)CrossRefGoogle Scholar
  20. 20.
    S.R. Rittling, H.N. Matsumoto, M.D. Mckee, A. Nanci, X.R. An, K.E. Novick, A.J. Kowalski, M. Noda, D.T. Denhardt, J. Bone Miner. Res. 13, 1101 (1998)CrossRefGoogle Scholar
  21. 21.
    C.J. Aitken, J.M. Hodge, G.C. Nicholson, J. Cell Biochem. 93, 896 (2004)CrossRefGoogle Scholar
  22. 22.
    A.M. Pietak, M. Sayer, J.W. Reid, A. Pietak, D. Dunfield, T.J. Smith, Biomaterials 27, 3 (2006)CrossRefGoogle Scholar
  23. 23.
    H.T. Zreiqat. T.N. Crotti, Biomaterials 24, 337 (2003)CrossRefGoogle Scholar
  24. 24.
    A. Sabokbar, R. Pandey, J. Mater. Sci. Mater. Med. 12, 659 (2001)CrossRefGoogle Scholar
  25. 25.
    L. Liaw, D.E. Birk, C.B. Ballas, J.S. Whitsitt, J.M. Davidson, B.L. Hogan, J. Clin. Invest. 101, 1468 (1998)Google Scholar
  26. 26.
    N. Takahashi, N. Udagawa, S. Tanaka, T. Suda, Methods Mol. Med. 80, 129 (2003)Google Scholar
  27. 27.
    I. Nakamura, N. Takahashi, T. Sasaki, E. Jimi, T. Kurokawa, T. Suda, J. Bone Miner. Res. 11, 1873 (1996)CrossRefGoogle Scholar
  28. 28.
    B. Ratner D. Castner, in Surface Analysis-Techniques and Applications, ed. by J. Vickerman N. Reed (Wiley, Chichester, UK, 1992)Google Scholar
  29. 29.
    N. Udagawa, N. Takahashi, T. Akatsu, H. Tanaka, T. Sasaki, T. Nishihara, T. Koga, T.J. Martin, T. Suda, Proc. Natl Acad. Sci. USA 87, 7260 (1990)CrossRefGoogle Scholar
  30. 30.
    H. Yoshitake, S.R. Rittling, D.T. Denhardt, M. Noda, F.P. Ross, J. Chappel, J.I. Alvarez, D. Sander, W.T. Butler, M.C. Farach-Carson, K.A. Mintz, P.G. Robey, S.L. Teitelbaum, D.A. Cheresh, A. Miyauchi, J. Alvarez, E.M. Greenfield, A. Teti, M. Grano, S. Colucci, A. Zambonin-Zallone, D. Cheresh, et al., Proc. Natl Acad. Sci. USA 96, 8156 (1999)CrossRefGoogle Scholar
  31. 31.
    H. Ihara, D.T. Denhardt, K. Furuya, T. Yamashita, Y. Muguruma, K. Tsuji, K.A. Hruska, K. Higashio, S. Enomoto, A. Nifuji, S.R. Rittling, M. Noda, J. Biol. Chem. 276, 13065 (2001)CrossRefGoogle Scholar
  32. 32.
    M. Ishijima, K. Tsuji, S.R. Rittling, T. Yamashita, H. Kurosawa, D.T. Denhardt, A. Nifuji, M. Noda, J. Bone Miner. Res. 17, 661 (2002)CrossRefGoogle Scholar
  33. 33.
    S.B. Rodan, G.A. Rodan, J. Endocrinol. 154, S47 (1997)Google Scholar
  34. 34.
    F.P. Ross, J. Chappel, J.I. Alvarez, D. Sander, W.T. Butler, M.C. Farach-Carson, K.A. Mintz, P.G. Robey, S.L. Teitelbaum, D.A. Cheresh, A. Miyauchi, J. Alvarez, E.M. Greenfield, A. Teti, M. Grano, S. Colucci, A. Zambonin-Zallone, D. Cheresh, et al., J. Biol. Chem. 268, 9901 (1993)Google Scholar
  35. 35.
    M.M. Cooke, G.M. Mccarthy, J.D. Sallis, M.P. Morgan, Breast Cancer Res. Treat. 79, 253 (2003)CrossRefGoogle Scholar
  36. 36.
    B.M. Whited, D. Skrtic, B.J. Love, A.S. Goldstein, J. Biomed. Mater. Res. A. 76, 596 (2006)Google Scholar
  37. 37.
    N.J. Hallab, J.J. Jacobs, J.L. Katz, in Biomaterials Science: An Introduction to Materials in Medicine, ed. by B.D. Ratner, A.S. Hoffman, F.J. Schoen, J.E. Lemons (Academic Press, 2004) p. 526Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Rupak M. Rajachar
    • 1
  • Anh Q. Truong
    • 1
  • Cecilia M. Giachelli
    • 1
  1. 1.University of Washington Engineered Biomaterials (UWEB), University of WashingtonSeattleUSA

Personalised recommendations