Aluminium and fluoride release into artificial saliva from dental restoratives placed in teeth

  • Elizabeta Gjorgievska
  • John W. NicholsonEmail author
  • Icko Gjorgovski
  • Snezana Iljovska


This study examined the release of aluminium and fluoride from restorative materials placed in either deciduous or young permanent immature teeth stored in artificial saliva for 1 month. Cavities were prepared in extracted teeth, then filled with a fluoride releasing restorative (glass-ionomer, compomer or composite resin), with and without conditioning as appropriate. The teeth were then stored in artificial saliva for 1 month, after which the amount of aluminium and fluoride released was determined spectrophotometrically. With all materials tested, both aluminium and fluoride were released in all cases. Young immature teeth were associated with lower level of ion release which was attributed to the absorption of ions by the enamel. However, unconditioned samples were usually associated with similar ion release to conditioned ones, suggesting that the loss of mineral phase on conditioning has only a marginal effect on the capacity for ion uptake. The ratio of aluminium to fluoride released varied with the type of tooth, deciduous conditioned teeth generally absorbing proportionately less aluminium than young immature teeth. The overall conclusion is that interaction with ions released by restorative materials is influenced by type of tooth.


Composite Resin Deciduous Tooth Permanent Tooth Artificial Saliva Restorative Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We acknowledge the financial support of the UK Engineering and Physical Sciences Research Council.


  1. 1.
    K.J. Anusavice, Ch 24 in Phillip’s Science of Dental Biomaterials, 10th edn. (Saunders, Philadelphia, 1996), pp. 525–554Google Scholar
  2. 2.
    J. Hicks, F. Garcia-Godoy, K. Donly, K. Flaitz, J. Calif. Dent. Assoc. 31, 229 (2003)Google Scholar
  3. 3.
    E.C. Combe, F.J.T. Burke, W.H. Douglas, Ch 6 in dental biomaterials. (Kluwer Academic Publishers, Norwell, MA, 1999), pp. 190–280Google Scholar
  4. 4.
    Y.H. Li, G.H.W. Bowden, J. Dent. Res. 73, 1615 (1994)Google Scholar
  5. 5.
    L. Forsten, Biomaterials 19, 509 (1998)CrossRefGoogle Scholar
  6. 6.
    T. Itotai, Y. Torii, S. Nakabo, Y. Tashiro, N. Konishi, M. Nagamine, M. Yoshiyama, J. Oral Rehabil. 30, 178 (2003)CrossRefGoogle Scholar
  7. 7.
    J.W. Nicholson, Biomaterials 19, 485 (1998)CrossRefGoogle Scholar
  8. 8.
    P.V. Hatton, I.M. Brook, Br. Dent. J. 173, 275 (1992)CrossRefGoogle Scholar
  9. 9.
    L.A.M. Marks, R.M.H. Verbeeck, E.A.P. de Maeyer, L.C. Martens, Biomaterials 21, 2011 (2000)CrossRefGoogle Scholar
  10. 10.
    J. Arends, J. Rubin, A.G. Dijkman, Quintessence Int. 21, 671 (1990)Google Scholar
  11. 11.
    T. Attin, W. Buchalla, C. Siewert, E. Hellweg, J. Oral Rehabil. 26, 388 (1999)CrossRefGoogle Scholar
  12. 12.
    P. Dionysooulos, N. Kotsanos, A. Pataridou, J. Oral Rehabil. 30, 866 (2003)CrossRefGoogle Scholar
  13. 13.
    W. Geurtsen, G. Leyhausen, F. Garcia-Godoy, Dent. Mater. 15, 196 (1999)CrossRefGoogle Scholar
  14. 14.
    A. Guida, R.G. Hill, M.R. Towler, S. Eramo, J. Mater. Sci. Mater. Med. 13, 645 (2002)CrossRefGoogle Scholar
  15. 15.
    D. Sales, D. Sae-Lee, S. Matsuya, I.D. Ana, Biomaterials 24, 1687 (2003)CrossRefGoogle Scholar
  16. 16.
    H. Nakajima, H. Komatsu, T. Okabe, J. Dent. 25, 137 (1997)CrossRefGoogle Scholar
  17. 17.
    R.R. Welbury, Ch 1 in paediatric dentistry (University Press, Oxford, 1999)Google Scholar
  18. 18.
    S. Cohen, C.R. Burns, Ch 23 in pathways of the pulp (Mosby Inc., Philadelphia, 2002)Google Scholar
  19. 19.
    T.N. Sardella, F.L.A. de Castro, M.E. Sanabe, J. Hebling, J. Dent. 33, 355 (2005)CrossRefGoogle Scholar
  20. 20.
    J.W. Nicholson, M.A. Amiri, J. Mater. Sci. Mater. Med. 9, 549 (1998)CrossRefGoogle Scholar
  21. 21.
    E. Bellack, P.J. Schouboe, Anal. Chem. 30, 2032 (1958)CrossRefGoogle Scholar
  22. 22.
    W.M. Tay, M. Braden, Biomaterials 9, 454 (1988)CrossRefGoogle Scholar
  23. 23.
    R.M.H. Verbeeck, R.J.G. de Moor, D.F.J. van Even, L.C. Martens, J. Dent. Res. 72, 577 (1993)Google Scholar
  24. 24.
    V.M. Miettinen, P.K. Vallittu, H. Forss, J. Mater. Sci. Mater. Med. 12, 503 (2001)CrossRefGoogle Scholar
  25. 25.
    A.I. Abdalla, S.E.L. Mahallawy, C.L. Davidson, J. Oral Rehabil. 29, 714 (2002)CrossRefGoogle Scholar
  26. 26.
    J.A. Williams, E. Briggs, R.W. Billington, G.J. Pearson, Biomaterials 24, 1301 (2003)CrossRefGoogle Scholar
  27. 27.
    W.D. Chan, L. Yang, W. Lan, A.S. Rizkalla, Dent. Mater. 22, 366 (2006)CrossRefGoogle Scholar
  28. 28.
    C.M. Kreulen, J.J. de Soet, K.L. Weerheijm, W.E. van Ameronge, Caries Res. 31, 384 (1997)CrossRefGoogle Scholar
  29. 29.
    J.W. Nicholson, B. Czarnecka, J. Oral Rehabil. 31, 665 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Elizabeta Gjorgievska
    • 1
  • John W. Nicholson
    • 2
    Email author
  • Icko Gjorgovski
    • 3
  • Snezana Iljovska
    • 1
  1. 1.Clinic for Pediatric and Preventive Dentistry, Faculty of Dental MedicineUniversity “Sts. Kiril and Metodij”SkopjeRepublic of Macedonia
  2. 2.School of ScienceUniversity of GreenwichKentUK
  3. 3.Faculty of Natural and Mathematic SciencesUniversity “Sts. Kiril and Medodij”SkopjeRepublic of Macedonia

Personalised recommendations