Journal of Materials Science: Materials in Medicine

, Volume 19, Issue 9, pp 3035–3039 | Cite as

The interaction of zinc oxide-based dental cements with aqueous solutions of potassium fluoride

  • K. Pawluk
  • S. E. Booth
  • N. J. Coleman
  • J. W. Nicholson


The ability of zinc oxide-based dental cements (zinc phosphate and zinc polycarboxylate) to take up fluoride from aqueous solution has been studied. Only zinc phosphate cement was found to take up any measurable fluoride after 5 h exposure to the solutions. The zinc oxide filler of the zinc phosphate also failed to take up fluoride from solution. The key interaction for this uptake was thus shown to involve the phosphate groups of the set cement. However, whether this took the form of phosphate/fluoride exchange, or the formation of oxyfluoro-phosphate groups was not clear. Fluoride uptake followed √time kinetics for about 2 h in some cases, but was generally better modelled by the Elovich equation, dqt/dt = α exp(−βqt). Values for α varied from 3.80 to 2.48 × 104, and for β from 7.19 × 10−3 to 0.1946, though only β showed any sort of trend, becoming smaller with increasing fluoride concentration. Fluoride was released from the zinc phosphate cements in processes that were diffusion based up to Mt/M of about 0.4. No further release occurred when specimens were placed in fresh volumes of deionised water. Only a fraction of the fluoride taken up was re-released, demonstrating that most of the fluoride taken up becomes irreversibly bound within the cement.


Fluoride Concentration Zinc Phosphate Tobermorite Fluoride Uptake Fluoride Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We acknowledge financial support from the Nuffield Foundation (in the form of a vacation scholarship to KP) and from the University of Greenwich (for a postgraduate student bursary to SEB).


  1. 1.
    R.W. Billington, J.A. Williams, G.J. Pearson, J. Dent. 34, 544 (2006)CrossRefGoogle Scholar
  2. 2.
    V. Lind, G. Wennerholm, S. Nystrom, Acta Odontol. Scand. 22, 233 (1964)CrossRefGoogle Scholar
  3. 3.
    L. Forsten, Scand. J. Dent. Res. 85, 503 (1977)Google Scholar
  4. 4.
    R.J.G. De Moor, R.M.H. Verbeeck, E.A.P. De Maeyer, Dent. Mater. 12, 88 (1996)CrossRefGoogle Scholar
  5. 5.
    A.D. Wilson, D.M. Groffman, A.T. Kuhn, Biomaterials 6, 431 (1985)CrossRefGoogle Scholar
  6. 6.
    L. Forsten, Scand. J. Dent. Res. 91, 241 (1991)Google Scholar
  7. 7.
    W.A.G. El-Badrawy, D. McComb, R.E. Wood, Dent. Mater. 29, 63 (1993)CrossRefGoogle Scholar
  8. 8.
    A.M.J. De Witte, E.A.P. De Maeyer, R.M.H. Verbeeck, Biomaterials 24, 1995 (2003)CrossRefGoogle Scholar
  9. 9.
    R.W. Billington, P.C. Hadley, M.R. Towler, G.J. Pearson, J.A. Williams, Biomaterials 21, 377 (2000)CrossRefGoogle Scholar
  10. 10.
    S.B. Mitra, J. Dent. Res. 70, 75 (1991)Google Scholar
  11. 11.
    H. Forss, J. Dent. Res. 72, 1257 (1993)Google Scholar
  12. 12.
    D. Sales, D. Sae-Lee, S. Matsuya, I.D. Ana, Biomaterials 24, 1687 (2003)CrossRefGoogle Scholar
  13. 13.
    J.W. Nicholson, B. Czarnecka, J. Oral Rehabil. 31, 665 (2004)CrossRefGoogle Scholar
  14. 14.
    M. Rothwell, H.M. Anstice, G.J. Pearson, J. Dent. 26, 591 (1998)CrossRefGoogle Scholar
  15. 15.
    X. Xu, J.O. Burgess, Biomaterials 24, 2451 (2003)CrossRefGoogle Scholar
  16. 16.
    A.D. Wilson, J.W. Nicholson, Acid-Base Cements (The University Press, Cambridge, 1993)Google Scholar
  17. 17.
    J.W. Nicholson, B. Czarnecka, H. Limanowska-Shaw, J. Mater. Sci. Mater. Med. 10, 449 (1999)CrossRefGoogle Scholar
  18. 18.
    B. Czarnecka, H. Limanowska-Shaw, J.W. Nicholson, J. Mater. Sci.. Mater. Med. 14, 601 (2003)CrossRefGoogle Scholar
  19. 19.
    Z. Ram, I. Gedalia, I. Reissten, J. Dent. Res. 52, 1344 (1973)Google Scholar
  20. 20.
    R.W. Billington, P.C. Hadley, J.A. Williams, G.J. Pearson, Biomaterials 22, 2507 (2001)CrossRefGoogle Scholar
  21. 21.
    M.J.D. Low, Chem. Rev. 60, 267 (1960)CrossRefGoogle Scholar
  22. 22.
    N.H. De Leeuw, J. Phys. Chem. B 108, 1809 (2004)CrossRefGoogle Scholar
  23. 23.
    J.D.B. Featherstone, Community Dent. Oral Epidemiol. 27, 31 (1999)CrossRefGoogle Scholar
  24. 24.
    D.J. White, G.H. Nancollas, J. Dent. Res. 69, 587 (1990)Google Scholar
  25. 25.
    I. Abe, S. Iwasaki, T. Tokimoto, N. Kawasaki, T. Nakamura, S. Tanada, J. Colloid Interface Sci. 275, 35 (2004)CrossRefGoogle Scholar
  26. 26.
    S.E.H. Niven, R.M. Moore, Geochim. Cosmochim. Acta. 57, 2169 (1993)CrossRefGoogle Scholar
  27. 27.
    N.J. Coleman, D.S. Brassington, A. Raza, A.P. Mendham, Waste Manag. 26, 260 (2006)CrossRefGoogle Scholar
  28. 28.
    N.J. Coleman, D.S. Brassington, A. Raza, A.P. Mendham, Environ. Technol. 27, 1089 (2006)CrossRefGoogle Scholar
  29. 29.
    S.H. Chien, W.R. Clayton, Soil Sci. Am. J. 44, 265 (1980)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • K. Pawluk
    • 1
  • S. E. Booth
    • 1
  • N. J. Coleman
    • 1
  • J. W. Nicholson
    • 1
  1. 1.Department of Environmental, Chemical and Pharmaceutical Sciences, School of ScienceUniversity of GreenwichKentUK

Personalised recommendations