Advertisement

Journal of Materials Science: Materials in Medicine

, Volume 19, Issue 9, pp 3063–3070 | Cite as

Preparation, characterization and mechanical performance of dense β-TCP ceramics with/without magnesium substitution

  • Xing Zhang
  • Fengchun Jiang
  • Todd Groth
  • Kenneth S. Vecchio
Article

Abstract

Beta-tricalcium phosphate (β-TCP) powder was prepared by a two-step process: wet precipitation of apatitic tricalcium phosphate [Ca9(HPO4)(PO4)5(OH)] (β-TCP ‘precursor’) and calcination of the precursor at 800°C for 3 h to produce β-TCP. Magnesium-substituted tricalcium phosphate (β-TCMP) was produced by adding Mg(NO3)2 · 6H2O into Ca(NO3)2 solution as Mg2+ source before the precipitation step. The transition temperature from β-TCP to α-TCP increases with the increase of Mg2+ content in β-TCMP. β-TCMP with 3 mol.% Mg2+ has β-TCP to α-TCP transition temperature above 1,300°C. Dense β-TCMP (3 mol.% Mg2+) ceramics (∼99.4% relative density) were produced by pressing the green bodies at 100 MPa and further sintering at 1,250°C for 2 h. The average compressive strength of dense β-TCP ceramics sintered at 1,100°C is ∼540 MPa, while that of β-TCMP (3 mol.% Mg2+) ceramics is ∼430 MPa.

Keywords

Compressive Strength Tricalcium Phosphate Pressureless Sinter Ceramic Density Average Compressive Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    F. Peters, D. Reif, Mat-wiss u Werkstofftech 35, 203 (2004)CrossRefGoogle Scholar
  2. 2.
    N. Kondo, A. Ogose, K. Tokunaga, T. Ito, K. Arai, N. Kudo, H. Inoue, H. Irie, N. Endo, Biomaterials 26, 5600 (2005)CrossRefGoogle Scholar
  3. 3.
    H.E. Koepp, S. Schorlemmer, S. Kessler, R.E. Brenner, L. Claes, K.P. Günther, A.A. Ignatius, J. Biomed. Mater. Res. Part B Appl. Biomater. 70, 209 (2004)CrossRefGoogle Scholar
  4. 4.
    N. Matsushita, H. Terai, T. Okada, K. Nozaki, H. Inoue, S. Miyamoto, K. Takaoka, J. Biomed. Mater. Res. Part A 70, 450 (2004)CrossRefGoogle Scholar
  5. 5.
    P. Miranda, E. Saiz, K. Gryn, A.P. Tomsia, Acta Biomater. 2, 457 (2006)CrossRefGoogle Scholar
  6. 6.
    P.N. Kumta, C. Sfeir, D.H. Lee, D. Olton, D. Choi, Acta Biomater. 1, 65 (2005)CrossRefGoogle Scholar
  7. 7.
    R. Famery, N. Richard, P. Boch, Ceram. Int. 20, 327 (1994)CrossRefGoogle Scholar
  8. 8.
    M. Descamps, J.C. Hornez, A. Leriche, J. Eur. Ceram. Soc. 27, 2401 (2007)CrossRefGoogle Scholar
  9. 9.
    M. Yashima, A. Sakai, Chem. Phys. Lett. 372, 779 (2003)CrossRefGoogle Scholar
  10. 10.
    K. Itatani, M. Takahashi, F.S. Howell, M. Aizawa, J. Mater. Sci. Mater. Med. 13, 707 (2002)CrossRefGoogle Scholar
  11. 11.
    A. Tampieri, G. Celotti, F. Szontagh, E. Landi, J. Mater. Sci. Mater. Med. 8, 29–37 (1997)CrossRefGoogle Scholar
  12. 12.
    K. Itatani, T. Nishioka, S. Seike, F.S. Howell, A. Kishioka, M. Kinoshita, J. Am. Ceram. Soc. 77, 801 (1994)CrossRefGoogle Scholar
  13. 13.
    R. Enderle, F. Götz-Neunhoeffer, M. Göbbels, F.A. Müller, P. Greil, Biomaterials 26, 3379 (2005)CrossRefGoogle Scholar
  14. 14.
    D.M.B. Wolff, E.G. Ramalho, W. Acchar, Mater. Sci. Forum 530–531, 581 (2006)CrossRefGoogle Scholar
  15. 15.
    J. Marchi, A.C.S. Dantas, P. Greil, J.C. Bressiani, A.H.A. Bressiani, F.A. Müller, Mater. Res. Bull. 42, 1040 (2007)CrossRefGoogle Scholar
  16. 16.
    K.D. Groot, Bioceramics of Calcium Phosphate (CRC Press, Boca Raton, Florida, 1983)Google Scholar
  17. 17.
    R. Lagier, C.A. Baud, Pathol. Res. Pract. 199, 329 (2003)CrossRefGoogle Scholar
  18. 18.
    L.M. Ryan, H.S. Cheung, R.Z. LeGeros, I.V. Kurup, J. Toth, P.R. Westfall, G.M. McCarthy, Calcif. Tissue Int. 65, 374 (1999)CrossRefGoogle Scholar
  19. 19.
    K.S. Vecchio, X. Zhang, J.B. Massie, M. Wang, C.W. Kim, Acta Biomater. 3, 785 (2007)CrossRefGoogle Scholar
  20. 20.
    A. Destainville, E. Champion, D. Bernache-Assollant, E. Laborde, Mater. Chem. Phys. 80, 269 (2003)CrossRefGoogle Scholar
  21. 21.
    J.J. Prieto Valdés, J. Ortiz López, G. Rueda Morales, G. Pacheco Malagon, V. Prieto Gortcheva, J. Mater. Sci. Mater. Med. 8, 297 (1997)CrossRefGoogle Scholar
  22. 22.
    I.R. Gibson, I. Rehman, S.M. Best, W. Bonfield, J. Mater. Sci. Mater. Med. 12, 799 (2000)CrossRefGoogle Scholar
  23. 23.
    S. Kannan, A.F. Lemos, J.H.G. Rocha, J.M.F. Ferreira, J. Am. Ceram. Soc. 89, 2757 (2006)CrossRefGoogle Scholar
  24. 24.
    J.C. Elliott, Structure and Chemistry of the Apatites and Other Calcium Orthophosphates (Elsevier Science, Amsterdam, The Netherlands, 1994)Google Scholar
  25. 25.
    C. Tardei, F. Grigore, I. Pasuk, S. Stoleriu, J. Optoelectron. Adv. Mater. (JOAM) 8, 568 (2006)Google Scholar
  26. 26.
    J.B. Wachtman, Mechanical Properties of Ceramics (Wiley-Interscience, New York, 1996)Google Scholar
  27. 27.
    R. Menig, M.H. Meyers, M.A. Meyers, K.S. Vecchio, Mater. Sci. Eng. A 297, 203 (2001)CrossRefGoogle Scholar
  28. 28.
    R. Menig, M.H. Meyers, M.A. Meyers, K.S. Vecchio, Acta Mater. 48, 2383 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Xing Zhang
    • 1
  • Fengchun Jiang
    • 2
  • Todd Groth
    • 2
  • Kenneth S. Vecchio
    • 2
  1. 1.Materials Science and Engineering ProgramUC San DiegoLa JollaUSA
  2. 2.Department of NanoEngineeringUC San DiegoLa JollaUSA

Personalised recommendations