Advertisement

Controlled size and morphology of EDTMP-doped hydroxyapatite nanoparticles as model for 153Samarium-EDTMP doping

  • YuLing Jamie Han
  • Say Chye Joachim Loo
  • Ngoc Thao Phung
  • Freddy Boey
  • Jan Ma
Article

Abstract

Hydroxyapatite (HA) nanoparticles have been studied as nano-sized carriers for the delivery of therapeutic agents. One important consideration for these carriers to be used effectively is their bio-distribution in vivo, of which particle size has a significant effect. In this work, HA nanoparticles doped with Ethylene-diamine-tetramethylene-phosphonate (EDTMP) were synthesized via co-precipitation as a model for HA doped with 153Samarium (153Sm) EDTMP. EDTMP has high affinity for radioactive 153Sm isotopes that can emit both gamma and beta radiation. The effects of synthesis temperature, amount of dopant and hydrothermal treatment on the size of HA-EDTMP nanoparticles were therefore studied. The results showed that the EDTMP ligand was successfully incorporated in the nanoparticles without changing the crystal structure as shown from X-ray diffractometer (XRD) analysis. From the Field Emission Scanning Electron Microscopy (FESEM) and Transmission Electron Microscopy (TEM) micrographs, it was observed that shorter rod-like nanoparticles, obtained at low synthesis temperatures, became elongated needle-like nanoparticles with increasing temperature. Increasing dopant amount by five fold increases particle size slightly, while a two fold increase in dopant amount has no significant effect. Hydrothermal treatment increases particle crystallinity and results in smooth elongated rod-like structures. The size of HA nanoparticles doped with EDTMP can therefore be manipulated by controlling synthesis temperature and through hydrothermal treatment.

Keywords

Field Emission Scan Electron Microscope Dynamic Light Scattering Dynamic Light Scattering Hydrothermal Treatment Synthesis Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Reference

  1. 1.
    K. Shigeru, T. Oku, S. Takagi, Hydraulic property of hydroxyapatite thermal decomposition product and its application as biomaterial. J. Ceram. Soc. 97, 96–101 (1989)Google Scholar
  2. 2.
    M. Jarcho, C.H. Bolen, M.B. Thomas, J.J. Bobich, J.F. Kay, J. Doremus, Hydroxylapatite synthesis and characterization in dense polycrystalline form. J. Mater. Sci. 11, 2027–2035 (1976)CrossRefGoogle Scholar
  3. 3.
    M. Vallet-Regi, Ceramics for medical applications. J. Chem. Soc. 2, 97–108 (2001)Google Scholar
  4. 4.
    L. Hermansson, L. Kraft, H. Engqvist, Chemically bonded ceramics as biomaterials. Key Eng. Mater. 247, 437–442 (2003)Google Scholar
  5. 5.
    T. Kokubo, H.M. Kim, M. Kawashita, Novel bioactive materials with different mechanical properties. Biomaterials 24, 2161–2175 (2003)CrossRefGoogle Scholar
  6. 6.
    M. Shirkhanzadeh, Microneedles coated with porous calcium phosphate ceramics: effective vehicles for transdermal delivery of solid trehalose. J. Mater. Sci.—Mater. Med. 16, 37–45 (2005)CrossRefGoogle Scholar
  7. 7.
    D.A. Wahl, J.T. Czernuszka, D.A. Wahl, J.T. Czernuszka, Collagen-hydroxyapatite composites for hard tissue repair. Euro. Cell. Mater. 11, 43–56 (2006)Google Scholar
  8. 8.
    J. Dumbleton, M.T. Manley, Hydroxyapatite-coated prostheses in total hip and knee arthroplasty. J. Bone Joint Surg. 86A, 2526–2540 (2004)Google Scholar
  9. 9.
    J.S. Grimes, T.J. Bocklage, J.D. Pitcher, Collagen and biphasic calcium phosphate bone graft in large osseous defects. Orthopedics 29, 145–148 (2006)Google Scholar
  10. 10.
    W. Paul, C.P. Sharma, Ceramic drug delivery: a perspective. J. Biomater. Appl. 17, 253–264 (2003)CrossRefGoogle Scholar
  11. 11.
    T. Matsumoto, M. Okazaki, M. Inoue, S. Yamaguchi, T. Toyonaga, Y. Hamada, J. Takahashi, Hydroxyapatite particles as a controlled release carrier of protein. Biomaterials. 25, 3807–3812 (2004)CrossRefGoogle Scholar
  12. 12.
    A. Uchida, Y. Shinto, N. Araki, K. Ono, Slow release of anticancer drugs from porous caclium hydroxyapatite ceramic. J. Orthopaed. Res. 10, 440–445 (1992)CrossRefGoogle Scholar
  13. 13.
    Y. Shinto, A. Uchida, F. Korkusuz, N. Araki, K. Ono, Calcium hydroxyapatite ceramic used as a delivery system for antibiotics. J. Bone Joint Surg. 74, 600–604 (1992) Google Scholar
  14. 14.
    M. Itokazu, W. Yang, T. Aoki, A. Ohara, N. Kato, Synthesis of antibiotic-loaded interporous hydroxyapatite blocks by vacuum method and in vitro drug release testing. Biomaterials 19, 817–819 (1998)CrossRefGoogle Scholar
  15. 15.
    A. Barroug, M.J. Glimcher, Hydroxyapatite crystals as a local delivery system for cisplatin: adsorption and release of cisplatin in vitro. J. Orthopaed. Res. 20, 274–280 (2002)CrossRefGoogle Scholar
  16. 16.
    M.J. Gorbunoff, Protein chromatography on hydroxyapatite columns. Method. Enzymol. 117, 370–380 (1985)CrossRefGoogle Scholar
  17. 17.
    S. Doonan, Chromatography on hydroxyapatite. Methods Mol. B. 244, 191–194 (2004)Google Scholar
  18. 18.
    L.L. Hench, Bioceramics: from concept to clinic. J. Amer. Ceram. Soc. 74, 1487–1510 (1991)CrossRefGoogle Scholar
  19. 19.
    W. Suchanek, M. Yoshimura, Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. J. Biomed. Mater. Res. 13, 94–117 (1998)Google Scholar
  20. 20.
    R.Z. LeGeros, Calcium phosphates in oral biology and medicine. Monogr Oral. Sci. 15, 1–201 (1991)Google Scholar
  21. 21.
    S.H. Zhu, B.Y. Huang, K.C. Zhou, S.P. Huang, F. Liu, Y.M. Li, Z.G. Xue, Z.G. Long, Hydroxyapatite nanoparticles as a novel gene carrier. J. Nanoparticle. Res. 6, 307–311 (2004)CrossRefGoogle Scholar
  22. 22.
    J.H. Turner, P.G. Claringbold, E.L. Hetherington, P. Sorby, A.A. Martindale, A phase I study of samarium-153 ethylenediaminetetramethylene phosphonate therapy for disseminated skeletal metastases. J Clin. Oncol. 7, 1926–1931 (1989)Google Scholar
  23. 23.
    J.H. Turner, P.G. Claringbold, A phase II study of treatment of painful multifocal skeletal metastases with single and repeated dose of samarium-153 ethylenediaminetetramethylene phosphonate. Euro. J. Cancer. 27, 1084–1086 (1991)Google Scholar
  24. 24.
    J.F. Eary, C. Collins, M. Satbin, C. Vernon, S. Petersdorf, M. Baker, S. Hartnett, S. Ferency, S.J. Addison, F. Appelbaum, E.E. Gordon, Samarium-153-EDTMP biodistribution and dosimetry estimation. J. Nucl. Med. 34, 1031–1036 (1993)Google Scholar
  25. 25.
    D.A. Podoloff, L.P. Kasi, E.E. Kim, F. Fossella, V.A. Bhadkamar, Evaluation of Sm-153-EDTMP as a bone imaging agent during a therapeutical trial. J. Nucl. Med. 32, A918 (1991)Google Scholar
  26. 26.
    L.J. Peters, L. Milas, G.H. Fletcher, The role of radiation therapy in the curative treatment of metastatic disease. in Cancer Invasion and Metastasis. Biologic and Therapeutic Aspects, ed. by G.L. Nicolson, L. Milas (Raven Press, New York, 1984), pp. 411–420Google Scholar
  27. 27.
    A. Mondry, R. Janicki, From structural properties of the EuIII complex with ethylenediaminetetra (methylenephosphonic acid) (H8EDTMP) towards biomedical applications. Dalton Trans. 39, 4702–4710 (2006)Google Scholar
  28. 28.
    W.F. Goeckeler, B. Edwards, W.A. Volkert, R.A. Holmes, J. Simon, D. Wilson, Skeletal localization of samarium-153 chelates: potential therapeutic bone agents. J. Nucl. Med. 28, 495–504 (1987)Google Scholar
  29. 29.
    W.F. Goeckeler, D.E. Troutner, W.A. Volkert, B. Edwards, J. Simon, D. Wilson, 153Sm radiotherapeutic bone agents. J. Radiat. Appl. Instum. B 13, 479–482 (1986)Google Scholar
  30. 30.
    P.J. Cameron, P.F. Klemp, A.A. Martindale, J.H. Turner, Prospective 153Sm-EDTMP therapy by whole body scintigraphy. Nucl. Med. Commun. 20, 609–615 (1999)CrossRefGoogle Scholar
  31. 31.
    E. Galiano, M. Stradiotto, A statistical analysis of the initial biodistribution of 153Sm-EDTMP in a canine. Appl. Radiat. Isot. 63, 79–85 (2005)CrossRefGoogle Scholar
  32. 32.
    T.O. Hooi, J.S. Loo, F.Y. Boey, S.J. Russell, J. Ma, W.P. Kah, Exploiting the high-affinity phosphonate–hydroxyapatite nanoparticle interaction for delivery of radiation and drugs. J. Nanoparticle Res. 10, 141–150 (2007)Google Scholar
  33. 33.
    D. Chirby, S. Franck, D.E. Troutner, Adsorption of samarium-153 complex with EDTMP on calcium hydroxyapatite. Appl. Radiat. Isot. 39, 495–499 (1988)CrossRefGoogle Scholar
  34. 34.
    G. Clunie, D. Liu, I. Cullum, J.C. Edwards, P.J. Ell, Samarium-153-particulate hydroxyapatite radiation synovectomy- Biodistribution data for chronic knee Synovitis. J. Nucl. Med. 36(1), 51–57 (1995)Google Scholar
  35. 35.
    E.K. O’Duffy, F.J. Oliver, S.J. Chatters, H. Walker, D.C. Lloy, J.C. Edwards, P.J. Ell, Chromosomal analysis of peripheral lymphocytes of patients before and after radiation synovectomy with samarium-153 particulate hydroxyapatite. Rheumatology 38(4), 316–320 (1999)CrossRefGoogle Scholar
  36. 36.
    G. Storm, S.O. Belliot, T. Daemen, D.D. Lasic, Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. Adv. Drug Del. 17, 31–48 (1995)CrossRefGoogle Scholar
  37. 37.
    J. Brigger, C. Dubernet, P. Couvreur, Nanoparticles in cancer therapy and diagnosis. Adv. Drug Del. 54, 631–651 (1995)CrossRefGoogle Scholar
  38. 38.
    S. Koutsopoulos, Synthesis and characterization of hydroxyapatite crystals: A review study on the analytical methods. J. Biomed. Mater. Res. 62, 600–612 (2002)CrossRefGoogle Scholar
  39. 39.
    E. Princz, I. Szilágyi, K. Mogyorósi, I. Labádi, Lanthanide complexes of Ethylene Diamino Tetra Methylene Phosphonic Acid. J. Therm. Anal. Calorim. 69, 427–439 (2002)CrossRefGoogle Scholar
  40. 40.
    W.H. Emerson, E.E. Fisher, The infrared absorption spectra of carbonate in calcified tissues. Arch. Oral. Biol. 7, 671–683 (1962)CrossRefGoogle Scholar
  41. 41.
    V. Jokanović, D. Izvonar, M.D. Dramićanin, B. Jokanović, V. Živojinović, D. Marković, B. Dačić, Hydrothermal synthesis and nanostructure of carbonated calcium hydroxyapatite. J. Mater. Sci.—Mater. Med. 17, 539–546 (2006)CrossRefGoogle Scholar
  42. 42.
    D.G. Nelson, J.D. Featherstone, Preparation, analysis, and characterization of carbonated apatites. Calcif. Tissue Int. 34, 569–581 (1982)CrossRefGoogle Scholar
  43. 43.
    J. Barralet, S. Best, W. Bonfield, Carbonate substitution in precipitated hydroxyapatite: an investigation into the effects of reaction temperature and bicarbonate ion concentration. J. Biomed. Mater. Res. 41, 79–86 (1998)CrossRefGoogle Scholar
  44. 44.
    J. Barralet, J.C. Knowles, S. Best, W. Bonfield, Thermal decomposition of synthesised carbonate hydroxyapatite. J. Mater. Sci. Mater. Med. 13, 529–533 (2002)CrossRefGoogle Scholar
  45. 45.
    J.S.C. Loo, Y.W. Siew, S.H. Ho, Y.C. Boey, J. Ma, Synthesis and hydrothermal treatment of nanostructured hydroxyapatite of controllable sizes. J. Mater. Sci.—Mater. Med. 19, 1389–1397 (2008)CrossRefGoogle Scholar
  46. 46.
    Y.X. Pang, X. Bao, Influence of temperature, ripening time and calcination on the morphology and crystallinity of hydroxyapatite nanoparticles. J. Euro. Ceram. Soc. 23, 1697–1704 (2003)CrossRefGoogle Scholar
  47. 47.
    E. Landi, A. Tampieri, G. Celotti, S. Sprio, Densification behaviour and mechanisms of synthetic hydroxyapatites. J. Euro. Ceram. Soc. 20, 2377–2387 (2000)CrossRefGoogle Scholar
  48. 48.
    M. Vallet-Regı’, D. Arcos, Silicon substituted hydroxyapatites. a method to upgrade calcium phosphate based implants. J. Mater. Chem. 15, 1509–1516 (2005)CrossRefGoogle Scholar
  49. 49.
    N. Asaoka, S. Best, J.C. Knowles, W. Bonfield, Characterisation of hydroxyapatites precipitated from different reacants. Bioceramics 8, 331–337 (1995)Google Scholar
  50. 50.
    J. Gomez-Morales, J. Torrent-Burgues, T. Boix, J. Fraile, R. Rodriguez-Clemente, Investigations on the synthesis and crystallization of hydroxyapatite at low temperature. Cryst. Res. Tech. 36, 15–26 (2001)CrossRefGoogle Scholar
  51. 51.
    R. Kumar, K.H. Prakash, P. Cheang, K.A. Khor, Temperature driven morphological changes of chemically precipitated hydroxyapatite nanoparticles. Langmuir 20, 5196–5200 (2004)CrossRefGoogle Scholar
  52. 52.
    L. Ratke, P.W. Voorhees, Growth and Coarsening: Ostwald Ripening in Material Processing, 1st edn. (Springer, 2002), pp. 117–118Google Scholar
  53. 53.
    S.J. Zawacki, J.C. Heughebaert, G.H. Nancollas, The growth of nonstoichiometric apatite from aqueous solution at 37°C. II Effects of pH upon the precipitated phase. J. Colloid Interface Sci. 135, 33–44 (1990)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • YuLing Jamie Han
    • 1
  • Say Chye Joachim Loo
    • 1
  • Ngoc Thao Phung
    • 1
  • Freddy Boey
    • 1
  • Jan Ma
    • 1
  1. 1.School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations