Advertisement

Surface modifications of silicon nitride for cellular biosensor applications

  • Johan Gustavsson
  • George Altankov
  • Abdelhamid Errachid
  • Josep Samitier
  • Josep A. Planell
  • Elisabeth EngelEmail author
Article

Abstract

Thin films of silicon nitride (Si3N4) can be used in several kinds of micro-sized biosensors as a material to monitor fine environmental changes related to the process of bone formation in vitro. We found however that Si3N4 does not provide optimal conditions for osseointegration as osteoblast-like MG-63 cells tend to detach from the surface when cultured over confluence. Therefore Si3N4 was modified with self-assembled monolayers bearing functional end groups of primary amine (NH2) and carboxyl (COOH) respectively. Both these modifications enhanced the interaction with confluent cell layers and thus improve osseointegration over Si3N4. Furthermore it was observed that the NH2 functionality increased the adsorption of fibronectin (FN), promoted cell proliferation, but delayed the differentiation. We also studied the fate of pre-adsorbed and secreted FN from cells to learn more about the impact of above functionalities for the development of provisional extracellular matrix on materials interface. Taken together our data supports that Si3N4 has low tissue integration but good cellular biocompatibility and thus is appropriate in cellular biosensor applications such as the ion-sensitive field effect transistor (ISFET). COOH and NH2 chemistries generally improve the interfacial tissue interaction with the sensor and they are therefore suitable substrates for monitoring cellular growth or matrix deposition using electrical impedance spectroscopy.

Keywords

Osteocalcin Alkaline Phosphatase Activity Electrical Impedance Spectroscopy Osteocalcin Production Initial Cell Adhesion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was part of the European funded project NMP3-CT-2005-013912. The authors thank Drs. F. Bessueille and M. Pla-Roca of the Barcelona Science Park for help with the silanisation. J.G. acknowledges support from the Catalonian Government, Grant (2006FI00863), and Folke y Margit Pehrzon foundation. G.A acknowledges grants AGAUR 2004PIV25 from the Catalonian Government and SAB2004-0209 from the Spanish Ministry of Education and Science. E.E. acknowledges the Spanish Ministry of Education and Science for the Juan de la Cierva Grant. Roche Diagnostics is acknowledged for the provided vitamin D.

References

  1. 1.
    R. Kue, A. Sohrabi, D. Nagle, C. Frondoza, D. Hungerford, Biomaterials 20, 1195 (1999)CrossRefGoogle Scholar
  2. 2.
    A. Sohrabi, C. Holland, R. Kue, D. Nagle, D.S. Hungerford, C.G. Frondoza, J. Biomed. Mater. Res. 50, 43 (2000)CrossRefGoogle Scholar
  3. 3.
    A. Neumann, T. Reske, M. Held, K. Jahnke, C. Ragoß, H.R. Maier, J. Mater. Sci. Mater. Med. 15, 1135 (2004)CrossRefGoogle Scholar
  4. 4.
    P. Bergveld, Sensor. Actuat. B-Chem. 88, 1 (2003)CrossRefGoogle Scholar
  5. 5.
    M.J. Schöning, M. Thust, M. Müller-Veggian, P. Kordoš, H. Lüth, Sensor. Actuat. B-Chem. 47, 225 (1998)CrossRefGoogle Scholar
  6. 6.
    W.H. Baumann, M. Lehmann, A. Schwinde, R. Ehret, M. Brischwein, B. Wolf, Sensor. Actuat. B-Chem. 55, 77 (1999)CrossRefGoogle Scholar
  7. 7.
    S. Mohri, J. Shimizu, N. Goda, T. Miyasaka, A. Fujita, M. Nakamura, F. Kajiya, Sensor. Actuat. B-Chem. 115, 519 (2006)CrossRefGoogle Scholar
  8. 8.
    P. Clechet, Sensor. Actuat. B-Chem. 4, 53 (1991)CrossRefGoogle Scholar
  9. 9.
    A. Tlili, M.A. Jarbour, A. Abdelghani, D.M. Fathalah, M.A. Maaref, Mater. Sci. Eng. C 25, 490 (2005)CrossRefGoogle Scholar
  10. 10.
    S. Roy, A.J. Fleischman, Sensor. Mater. 15, 335 (2003)Google Scholar
  11. 11.
    P.R. Hernández, C. Taboada, L. Leija v. Tsutsumi, B. Vázquez, F. Valdés-Perezgasga, J.L. Reyes, Sensor. Actuat. B-Chem. 46, 133 (1998)CrossRefGoogle Scholar
  12. 12.
    G. Voskerician, M.S. Shive, R.S. Shawgo, H. von Recum, J.M. Anderson, M.J. Cima, R. Langer, Biomaterials 24, 1959 (2003)CrossRefGoogle Scholar
  13. 13.
    C.S. Giannoulis, T.A. Desai, J. Mater. Sci. Mater. Med. 13, 75 (2002)CrossRefGoogle Scholar
  14. 14.
    N. Wisniewski, M. Reichert, Colloids Surf. B 18, 197 (2000)CrossRefGoogle Scholar
  15. 15.
    R. Gifford, J.J. Kehoe, S.L. Barnes, B.A. Kornilayev, M.A. Alterman, G.S. Wilson, Biomaterials 27, 2587 (2006)CrossRefGoogle Scholar
  16. 16.
    R. Hynes, Fibronectins. (Springer-Verlag, New York, 1990)Google Scholar
  17. 17.
    G. Altankov, F. Grinnell, T. Groth, J. Biomed. Mater. Res. 30, 385 (1996)CrossRefGoogle Scholar
  18. 18.
    G. Altankov, T. Groth, J. Mater. Sci. Mater. Med. 5, 732 (1994)CrossRefGoogle Scholar
  19. 19.
    R. Tzoneva, T. Groth, G. Altankov, D. Paul, J. Mater. Sci. Mater. Med. 13, 1235 (2002)CrossRefGoogle Scholar
  20. 20.
    N. Faucheux, R. Schweiss, K. Lützow, C. Werner, T. Groth, Biomaterials 25, 2721 (2004)CrossRefGoogle Scholar
  21. 21.
    M. Lee, D. Brass, R. Morris, R. Composto, P. Ducheyne, Biomaterials 26, 1721 (2005)CrossRefGoogle Scholar
  22. 22.
    M. Veiseh, M. Hadi Zareie, M. Zhang, Langmuir 18, 6671 (2002)CrossRefGoogle Scholar
  23. 23.
    I. Marques de Oliverira, M. Pla, L.I. Escriche, J. Casabó, N. Zine, J. Bausells, F. Bessueille, J. Samitier, A. Errachid, Proc. IEEE Sensors. 2, 726 (2004)CrossRefGoogle Scholar
  24. 24.
    M. Bras, V. Dugas, F. Bessueille, J.P. Cloarec, J.R. Martin, M. Cabrera, J.P. Chauveti, E. Souteyrand, M. Garrigues, Biosens. Bioelectron. 20, 797 (2004)CrossRefGoogle Scholar
  25. 25.
    M. Riedel, B. Müller, E. Wintermantel, Biomaterials 22, 2307 (2001)CrossRefGoogle Scholar
  26. 26.
    N. Faucheux, R. Tzoneva, M-D. Nagel, T. Groth, Biomaterials 27, 234 (2006)CrossRefGoogle Scholar
  27. 27.
    M. Bergkvist, J. Carlsson, S. Oscarsson, J. Biomed. Mater. Res. Part A 64A, 349 (2003)CrossRefGoogle Scholar
  28. 28.
    C.J. Wilson, R.E. Clegg, D.I. Leavesley, M.J. Pearcy, Tissue Eng. 11, 1 (2005)CrossRefGoogle Scholar
  29. 29.
    M. Yuqing, G. Jianguo, C. Jianrong, Biotechnol. Adv. 21, 527 (2003)CrossRefGoogle Scholar
  30. 30.
    B.G. Keselowsky, D.M. Collard, A.J. García, J. Biomed. Mater. Res. Part A 66A, 247 (2003)CrossRefGoogle Scholar
  31. 31.
    M.H. Lee, P. Ducheyne, L. Lynch, D. Boettiger, R.J. Composto, Biomaterials 27, 1907 (2006)CrossRefGoogle Scholar
  32. 32.
    P. Sivakumar, A. Czirok, B.J. Rongish, V.P. Divakara, Y.P. Wang, S.L. Dallas, J. Cell Sci. 119, 1350 (2006)CrossRefGoogle Scholar
  33. 33.
    J. Termine, P. Gehron Robey, in Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism, Ed. by M. Favus, (Lippencott-Raven Publishers, Philadelphia, 1996) p 24Google Scholar
  34. 34.
    M. Ahmad, M. McCarthy, G. Gronowicz, Biomaterials 20, 211 (1999)CrossRefGoogle Scholar
  35. 35.
    B.G. Keselowsky, D.M. Collard, A.J. García, Proc. Natl. Acad. Sci. USA 102, 5953 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Johan Gustavsson
    • 1
  • George Altankov
    • 2
    • 3
  • Abdelhamid Errachid
    • 3
    • 4
  • Josep Samitier
    • 3
    • 4
  • Josep A. Planell
    • 1
    • 3
  • Elisabeth Engel
    • 1
    Email author
  1. 1.Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and MetallurgyUniversitat Politècnica de CatalunyaBarcelonaSpain
  2. 2.ICREA – Institució Catalana de Recerca i Estudis AvançatsBarcelonaSpain
  3. 3.Laboratory of Nanobioengineering, Institut de Bioenginyeria de CatalunyaParc Científic de BarcelonaBarcelonaSpain
  4. 4.Department of ElectronicsUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations