Preparation of tricalcium phosphate/calcium pyrophosphate structures via rapid prototyping

  • Uwe Gbureck
  • Tanja Hölzel
  • Isabell Biermann
  • Jake E. Barralet
  • Liam M. Grover
Article

Abstract

Custom made tricalcium phosphate/calcium pyrophosphate bone substitutes with a well-defined architecture were fabricated in this study using 3D powder printing with tricalcium phosphate (TCP) powder and a liquid phase of phosphoric acid. The primary formed matrix of dicalcium phosphate dihydrate (DCPD, brushite) was converted in a second step to calcium pyrophosphate (CPP) by heat treatment in the temperature range 1,100–1,300°C. The structures exhibited compressive strengths between 0.8 MPa and 4 MPa after sintering at 1,100–1,250°C, higher strengths were obtained by increasing the amount of pyrophosphate formed in the matrix due to a post-hardening regime prior sintering as well as by the formation of a glass phase from TCP and calcium pyrophosphate above 1,280°C, which resulted in a strong densification of the samples and compressive strength of >40 MPa.

References

  1. 1.
    S.V. Dorozhkin, M. Epple, Angew. Chem. Int. Ed. 41, 3130 (2002)CrossRefGoogle Scholar
  2. 2.
    R.Z. Legeros, Calcium Phosphates in Oral Biology and Medicine (Karger, Basel, 1991)Google Scholar
  3. 3.
    M. Bohner, Eur. Spine J. 10, 114 (2001)CrossRefGoogle Scholar
  4. 4.
    P.S. Rosen, M.A. Reynolds, G.M. Bowers, Periodontology 22, 88 (2000)CrossRefGoogle Scholar
  5. 5.
    L.L. Hench, J. Am. Ceram. Soc. 81, 1705 (1998)CrossRefGoogle Scholar
  6. 6.
    A.A. Mirtichi, J. Lemaitre, E. Munting, Biomaterials 10, 634 (1989)CrossRefGoogle Scholar
  7. 7.
    R.I. Martin, P.W. Brown, Biomaterials 5, 96 (1994)Google Scholar
  8. 8.
    L. Hessle, K.A. Johnson, H.C. Anderson, R. Terkeltaub, J.L. Millan, J. Bone Miner. Res. 17, S128 (2002)CrossRefGoogle Scholar
  9. 9.
    E. Fosslien, Ann. Clin. Lab. Sci. 31, 25 (2001)Google Scholar
  10. 10.
    M. Mathew, L.W. Schroeder, B. Dickens, W.E. Brown, Acta Crystallog. B. 33, 1325 (1977)CrossRefGoogle Scholar
  11. 11.
    B. Dickens, L.W. Schroeder, W.E. Brown, J. Solid State Chem. 10, 232 (1974)CrossRefGoogle Scholar
  12. 12.
    C. Calvo, Inorg. Chem. 7, 1345 (1968)CrossRefGoogle Scholar
  13. 13.
    T. Kitsugi, T. Yamamuro, T. Nakamura, S. Kotani, T. Kokubo, H. Takeuchi, Biomaterials 3, 216 (1993)CrossRefGoogle Scholar
  14. 14.
    Z. Sadeghian, J.G. Heinrich, F. Moztaradeh, CFI-Ceram. Forum Int. 81, E39 (2004)Google Scholar
  15. 15.
    C.E. Wilson, J.D. De Bruijn, C.A. Van Blitterswijk, A.J. Verbout, W.J.A. Dhert, J. Biomed. Mater. Res. 68A, 123 (2004)CrossRefGoogle Scholar
  16. 16.
    N.K. Vail, L.D. Swain, W.C. Fox, T.B. Aufdlemorte, G. Lee, J.W. Barlow, Mater. Des. 20, 123 (1999)Google Scholar
  17. 17.
    K.H. Tan, C.K. Chua, K.F. Leong, C.M. Cheah, P. Cheang, M.S. Abu Bakar, S.W. Cha, Biomaterials 24, 3115 (2003)CrossRefGoogle Scholar
  18. 18.
    C.K. Chua, K.F. Leong, K.H. Tan, F.E. Wiria, C.M. Cheah, Biomaterials 15, 1113 (2004)Google Scholar
  19. 19.
    J.C. Elliott, Structure and Chemistry of the Apatites and Other Calcium Orthophosphates (Elsevier, Amsterdam, 1994), p. 49Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Uwe Gbureck
    • 1
  • Tanja Hölzel
    • 1
  • Isabell Biermann
    • 1
  • Jake E. Barralet
    • 2
  • Liam M. Grover
    • 3
  1. 1.Department for Functional Materials in Medicine and DentistryUniversity of WürzburgWurzburgGermany
  2. 2.Faculty of DentistryMcGill UniversityMontrealCanada
  3. 3.Chemical EngineeringUniversity of BirminghamEdgbastonUK

Personalised recommendations