Surface energy of hydroxyapatite and β-tricalcium phosphate ceramics driving serum protein adsorption and osteoblast adhesion

  • E. A. dos Santos
  • M. Farina
  • G. A. Soares
  • K. AnselmeEmail author


The main objective of this work was to evaluate the specific role of calcium phosphates surface energy on serum protein adsorption and human osteoblast adhesion, by isolating chemical effects from those caused by topography. Highly dense phosphate ceramics (single-phase hydroxyapatite HA and β-tricalcium phosphates β-TCP) presenting two distinct nano roughnesses were produced. Some samples were gold-sputter coated in order to conveniently mask the surface chemical effects (without modification of the original roughness) and to study the isolated effect of surface topography on cellular behavior. The results indicated that the nano topography of calcium phosphates strongly affected the protein adsorption process, being more important than surface chemistry. The seeding efficacy of osteoblasts was not affected nor by the topography neither by the calcium phosphate chemistries but the β-TCP chemistry negatively influenced cell spreading. We observed that surface hydrophobicity is another way to change protein adsorption on surfaces. The decrease of the polar component of surface energy on gold-coated samples leaded to a decreased albumin and fibronectin adsorption but to an increased cell adhesion. Overall, this work contributes to better understand the role of topography and surface chemistry of calcium phosphates in serum protein adsorption and osteoblast adhesion.


Protein Adsorption Original Surface Dispersive Component Osteoblast Adhesion Initial Cell Adhesion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research is part of the SWE/DSc program of CNPq Brazilian research agency. The authors acknowledge the financial support given by CNPq/Brazil and CNRS/France. They also thank the Catalysis Group NUCAT/COPPE/UFRJ and CBPF/Brazil.


  1. 1.
    L. HAO and J. LAWRENCE, Colloid. Surface B 34 (2004) 87CrossRefGoogle Scholar
  2. 2.
    S. B. KENNEDY, N. R. WASHBURN, C. G. SIMON and E. J. AMIS, Biomaterials 27 (2006) 3817CrossRefGoogle Scholar
  3. 3.
    K. L. KILPADI, P. L. CHANG and S. L. BELLIS, J. Biomed. Mater. Res. 57 (2001) 258CrossRefGoogle Scholar
  4. 4.
    C. YONGLI, Z. XIUFANG, G. YANDAO, Z. NANMING, Z. TINGYING and S. XINQI, J. Colloid Interf. Sci. 214 (1999) 38CrossRefGoogle Scholar
  5. 5.
    R. G. LEBARON and K. A. ATHANASIOU, Tissue Eng. 6 (2000) 85CrossRefGoogle Scholar
  6. 6.
    A. A. SAWYER, K. M. HENESSY and S. L. BELLIS, Biomaterials 26 (2005) 1467CrossRefGoogle Scholar
  7. 7.
    D. T. HUGHES WASSELL, R. C. HALL and G. EMBERY, Biomaterials 16 (1995) 697CrossRefGoogle Scholar
  8. 8.
    Q. LUO and J. D. ANDRADE, J. Colloid Interf. Sci. 200 (1998) 104CrossRefGoogle Scholar
  9. 9.
    K. CAI, J. BOSSERT and K. D. JANDT, Colloid. Surface B 49 (2006) 136CrossRefGoogle Scholar
  10. 10.
    B. WOJCIAK-STOTHARD, A. CURTIS, W. MONAGHAN, K. MACDONALD and C. WILKINSON, Exp. Cell. Res. 223 (1996) 426CrossRefGoogle Scholar
  11. 11.
    Y. F. DUFRÊNE, T. G. MARCHAL and P. G. ROUXHET, Langmuir 15 (1999) 2871CrossRefGoogle Scholar
  12. 12.
    S. G. PENN, L. HE and M. J. NATAN, Curr. Opin. Cell Biol. 7 (2003) 609Google Scholar
  13. 13.
    S. V. DOROZHKIN and M. EPPLE, Angew. Chem. Int. Ed. Engl. 41 (2002) 3130CrossRefGoogle Scholar
  14. 14.
    A. L. OLIVEIRA, P. B. MALAFAYA and R. L. REIS, Biomaterials 24 (2003) 2575CrossRefGoogle Scholar
  15. 15.
    K. BENZARTI, C. PERRUCHOT and M. M. CHEHIMI, Colloid. Surface A 286 (2006) 78CrossRefGoogle Scholar
  16. 16.
    D. K. OWENS and R. C. WENDT, J. Appl. Polym. Sci. 13 (1969) 1741CrossRefGoogle Scholar
  17. 17.
    M. J. DALBY, Med. Eng. Phys. 27 (2005) 730CrossRefGoogle Scholar
  18. 18.
    L. PONSONNET, V. COMTE, A. OTHMANE, C. LAGNEAU, M. CHARBONNIER, M. LISSAC and N. JAFFREZIC, Mat. Sci. Eng. C 21 (2002) 157CrossRefGoogle Scholar
  19. 19.
    J. Y. WONG, J. B. LEACH and X. Q. BROWN, Surf. Sci. 570 (2004) 119CrossRefGoogle Scholar
  20. 20.
    S. RAYNAUD, E. CHAMPION and D. BERNACHE-ASSOLANT, Biomaterials 23 (2002) 1073CrossRefGoogle Scholar
  21. 21.
    H. S. RYU, H. J. YOUN, K. S. HONG, B. S. CHANG, C. K. LEE and S. S. CHUNG, Biomaterials 23 (2002) 909CrossRefGoogle Scholar
  22. 22.
    P. MIRANDA, E. SAIZ, K. GRYN and A. P. TOMSIA, Acta Biomater. 2 (2006) 457CrossRefGoogle Scholar
  23. 23.
    S. BAILLIEZ and A. NZIHOU, Chem. Eng. J. 98 (2004) 141CrossRefGoogle Scholar
  24. 24.
    J. LONG, M. N. HYDER, R. Y. HUANG and P. CHEN, Adv. Colloid Interf. Sci. 118 (2005) 173CrossRefGoogle Scholar
  25. 25.
    M. HAN, A. SETHURAMAN, R. S. KANE and G. BELFORT, Langmuir 19 (2003) 9868CrossRefGoogle Scholar
  26. 26.
    F. L. YAP and Y. ZHANG, Biosens. Bioelectron. 22 (2007) 775CrossRefGoogle Scholar
  27. 27.
    A. DABROWSKI, Adv. Colloid Interf. Sci. 93 (2001) 135CrossRefGoogle Scholar
  28. 28.
    N. J. HALLAB, K. J. BUNDY, K. O’CONNOR, R. L. MOSES and J. J. JACOBS, Tissue Eng. 7 (2001) 55CrossRefGoogle Scholar
  29. 29.
    T. G. Van KOOTEN, H. T. SPIJKER and H. J. BUSSCHER, Biomaterials 25 (2004) 1735CrossRefGoogle Scholar
  30. 30.
    B. G. KESELOWSKY, D. M. COLLARD and A. J. GARCIA, J. Biomed. Mater. Res. 66A (2002) 247CrossRefGoogle Scholar
  31. 31.
    G. K. TOWORFE, R. J. COMPOSTO, C. S. ADAMS, I. M. SHAPIRO and P. DUCHEYNE, J. Biomed. Mater. Res. 71 (2004) 449CrossRefGoogle Scholar
  32. 32.
    K. WEBB, V. HLADY and P. A. TRESCO, J. Biomed. Mater. Res. 41 (1998) 422CrossRefGoogle Scholar
  33. 33.
    S. J. LEE, G. KHANG, Y. M. LEE and H. B. LEE, J. Colloid Interf. Sci. 259 (2003) 228CrossRefGoogle Scholar
  34. 34.
    J. H. LEE, S. J. LEE, G. KHANG and H. B. LEE, J. Colloid Interf. Sci. 230 (2000) 84CrossRefGoogle Scholar
  35. 35.
    L. MHAMDI, C. PICART, C. LAGNEAU, A. OTHMANE, B. GROGOGEAT, N. JAFFREZIC, L. PONSONNET, Mat. Sci. Eng. C 26 (2006) 273CrossRefGoogle Scholar
  36. 36.
    X. LIU, J. Y. LIM, H. J. DONAHUE, R. DHURJATI, A. M. MASTRO and E. A. VOGLER, Biomaterials 28 (2007) 4535CrossRefGoogle Scholar
  37. 37.
    H. M. KOWALCZYNSKA, M. NOWAK-WYRZYKOWSKA, R. KOLOS, J. DOBKOWSKI and J. KAMINSKY, J. Biomed. Mater. Res. 72 (2005) 228CrossRefGoogle Scholar
  38. 38.
    H. M. KOWALCZYNSKA and M. NOWAK-WYRZYKOWSKA, Cell Biol. Int. 27 (2003) 101CrossRefGoogle Scholar
  39. 39.
    S. A. REDEY, M. NARDIN, D. BERNACHE-ASSOLANT, C. REY, P. DELANNOY, L. SEDEL and P. J. MARIE, J. Biomed. Mater. Res. 50 (2000) 353CrossRefGoogle Scholar
  40. 40.
    G. ALTANKOV and T. GROTH, J. Mater. Sci. Mater. Med. 5 (1994) 732CrossRefGoogle Scholar
  41. 41.
    L. PONSONNET, K. REYBIER, N. JAFFREZIC, V. COMTE, C. LAGNEAU, M. LISSAC and C. MARTELET, Mat. Sci. Eng. C 23 (2003) 551CrossRefGoogle Scholar
  42. 42.
    A. S. SANTIAGO, E. A. DOS SANTOS, M. S. SADER, M. S. SANTIAGO and G. A. SOARES, Braz. Oral. Res. 19 (2005) 203CrossRefGoogle Scholar
  43. 43.
    R. QUIRK, W. C. CHAN, M. C. DAVIES, S. J. B. TENDLER and K. M. SHAKESHEFF, Biomaterials 22 (2001) 865CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • E. A. dos Santos
    • 1
    • 2
  • M. Farina
    • 3
  • G. A. Soares
    • 1
  • K. Anselme
    • 2
    Email author
  1. 1.Dep. de Eng. Metal. e de MateriaisCOPPE/UFRJRio de JaneiroBrazil
  2. 2.Institut de Chimie des Surfaces et Interfaces/UPR CNRS 9069MulhouseFrance
  3. 3.Lab. de BiomineralizaçãoICB/UFRJRio de JaneiroBrazil

Personalised recommendations