Advertisement

Ti K-edge XANES study of the local environment of titanium in bioresorbable TiO2–CaO–Na2O–P2O5 glasses

  • David M. Pickup
  • Ensanya A. Abou Neel
  • Robert M. Moss
  • Kate M. Wetherall
  • Paul Guerry
  • Mark E. Smith
  • Jonathan C. Knowles
  • Robert J. Newport
Article

Abstract

Ti K-edge XANES (X-ray absorption near edge structure) spectroscopy has been used to study the local coordination of titanium in biocompatible and bioresorbable TiO2–CaO–Na2O–P2O5 glasses. Both conventional melt-quenched glasses of composition (TiO2) x (CaO)0.30(Na2O)(0.20−x)(P2O5)0.50, where x = 0.01, 0.03 and 0.05, and sol–gel derived (TiO2)0.25(CaO)0.25(P2O5)0.50 glass have been studied. The results show that in all the materials studied, titanium is surrounded by an octahedron of oxygen atoms. Further analysis reveals that the TiO6 site in the amorphous samples is not heavily distorted relative to that in rutile, anatase or CaSiTiO5. The spectra from the (TiO2)0.25(CaO)0.25(P2O5)0.50 sol–gel samples reveal greater distortion in the TiO6 site in the dried gel compared to the heat-treated sol–gel glass. The XANES spectra from melt-quenched glass samples soaked in distilled water for various times do not shown any evidence of degradation of the titanium site over periods of up to 14 days.

Keywords

TiO2 Rutile XANES Spectrum Titanium Site TiO6 Octahedron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors wish to acknowledge funding from the EPSRC (EP/C000714, EP/C000633 and GR/T21080). We thank Steve Fiddy of the STFC Daresbury Laboratory for his assistance in the use of station 7.1.

References

  1. 1.
    J. C. KNOWLES, J. Mater. Chem. 13 (2003) 2395CrossRefGoogle Scholar
  2. 2.
    I. AHMED, M. LEWIS, I. OLSEN and J. C. KNOWLES, Biomaterials 25 (2004) 491CrossRefGoogle Scholar
  3. 3.
    I. AHMED, M. LEWIS, I. OLSEN and J. C. KNOWLES, Biomaterials 25 (2004) 501CrossRefGoogle Scholar
  4. 4.
    M. BITAR, V. SALIH, V. MUDERA, J. C. KNOWLES and M. P. LEWIS, Biomaterials 25 (2004) 2283CrossRefGoogle Scholar
  5. 5.
    H. W. KIM, E. J. LEE, I. K. JUN, H. E. KIM and J. C. KNOWLES, J. Biomed. Mater. Res. B Appl. Biomater. 75B (2005) 34CrossRefGoogle Scholar
  6. 6.
    A. M. MULLIGAN, M. WILSON and J. C. KNOWLES, J. Biomed. Mater. Res., Part A 67A (2003) 401CrossRefGoogle Scholar
  7. 7.
    E. A. ABOU NEEL, I. AHMED, J. PRATTEN, S. N. NAZHAT and J. C. KNOWLES, Biomaterials 26 (2005) 2247CrossRefGoogle Scholar
  8. 8.
    C. O. FREEMAN, I. M. BROOK, A. JOHNSON, P. V. HATTON and K. STANTON, J. Mater. Sci.: Mater. Med. 14 (2003) 985CrossRefGoogle Scholar
  9. 9.
    M. BITAR, J. C. KNOWLES, M. P. LEWIS and V. SALIH, J. Mater. Sci.: Mater. Med. 16 (2005) 1131CrossRefGoogle Scholar
  10. 10.
    J. CLEMENT, G. AVILA, M. NAVARRO, S. MARTINEZ, M. P. GINEBRA and J. A. PLANELL, Key Eng. Mater. 192 (2000) 621CrossRefGoogle Scholar
  11. 11.
    M. NAVARRO, J. CLEMENT, M. P. GINEBRA, S. MARTINEZ, G. AVILA and J. A. PLANELL, Key Eng. Mater. 218 (2002) 275Google Scholar
  12. 12.
    S. T. REIS, M. KARABULUT and D. E. DAY, J. Non-Cryst. Solids 292 (2001) 150CrossRefGoogle Scholar
  13. 13.
    I. AHMED, C. A. COLLINS, M. P. LEWIS, I. OLSEN and J. C. KNOWLES, Biomaterials 25 (2004) 3223CrossRefGoogle Scholar
  14. 14.
    S. FUJIBAYASHI, M. NEO, H. M. KIM, T. KOKUBO and T. NAKAMURA, Biomaterials 25 (2004) 443CrossRefGoogle Scholar
  15. 15.
    P. G. KOROVESSIS, D. D. DELIGIANNI and L. G. LENKE, J. Spinal Disord. Tech. 15 (2002) 175Google Scholar
  16. 16.
    R. M. LEVEN, A. S. VIRDI and D. R. SUMNER, J. Biomed. Mater. Res., Part A 70A (2004) 391CrossRefGoogle Scholar
  17. 17.
    C. D. SHIM, D. H. WON, H. W. CHO and B. I. KIM, J. Jpn. Inst. Met. 71 (2007) 113CrossRefGoogle Scholar
  18. 18.
    E. A. ABOU NEEL, T. MIZOGUCHI, M. ITO, M. BITAR, V. SALIH and J.C. KNOWLES, Biomaterials 28 (2007) 2967CrossRefGoogle Scholar
  19. 19.
    L. D. PIVETEAU, B. GASSER and L. SCHLAPBACH, Biomaterials 21 2193 (2000)CrossRefGoogle Scholar
  20. 20.
    D. M. PICKUP, K. M. WETHERALL, J. C. KNOWLES, M. E. SMITH and R. J. NEWPORT, J. Mater. Sci.: Mater. Med. (2007)  10.1007/s10856-007-3259-3
  21. 21.
    D. L. EVANS, J. Non-Cryst. Solids 52 (1982) 115CrossRefGoogle Scholar
  22. 22.
    H. NYMAN, M. O’KEEFE and J. O. BOVIN, Acta Crystallogr. B 34 (1978) 905CrossRefGoogle Scholar
  23. 23.
    J. A. SPEER and G. V. GIBBS, Am. Mineral 61 (1976) 238Google Scholar
  24. 24.
    G. A. WAYCHUNAS, Am. Mineral 72 (1987) 89Google Scholar
  25. 25.
    F. FARGES, G. E. BROWN and J. J. REHR, Phys. Rev. B 56 (1997) 1809CrossRefGoogle Scholar
  26. 26.
    G. FRONZONI, R. FRANCESCO, M. STENER and M. CAUSA, J. Phys. Chem. B 110 (2006) 9899CrossRefGoogle Scholar
  27. 27.
    B. POUMELLEC, P. J. DURHAM and G. Y. GUO, J. Phys.: Condens. Matter. 3 (1991) 8195CrossRefGoogle Scholar
  28. 28.
    G. MOUNTJOY, D. M. PICKUP, G. W. WALLIDGE, R. ANDERSON, J. M. COLE, R. J. NEWPORT and M. E. SMITH, Chem. Mater 11 (1999) 1253CrossRefGoogle Scholar
  29. 29.
    B. PILLEP, M. FROBA, M. L. F. PHILLIPS, J. WONG, G. D. STUCKY and P. BEHRENS, Solid State Commun. 103 (1997) 203CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • David M. Pickup
    • 1
  • Ensanya A. Abou Neel
    • 2
  • Robert M. Moss
    • 1
  • Kate M. Wetherall
    • 1
  • Paul Guerry
    • 3
  • Mark E. Smith
    • 3
  • Jonathan C. Knowles
    • 2
  • Robert J. Newport
    • 1
  1. 1.School of Physical SciencesUniversity of KentCanterburyUK
  2. 2.Division of Biomaterials and Tissue EngineeringUCL Eastman Dental InstituteLondonUK
  3. 3.Department of PhysicsUniversity of WarwickCoventryUK

Personalised recommendations