Nanoscale surface topography enhances cell adhesion and gene expression of madine darby canine kidney cells

  • C. Y. Jin
  • B. S. Zhu
  • X. F. Wang
  • Q. H. Lu
  • W. T. Chen
  • X. J. Zhou
Article

Abstract

Substrate topography is one of the key factors that influence cell behavior, such as cell attachment, adhesion, proliferation and differentiation. In the present work, nanostructures were produced on polystyrene Petri dish by polarized laser irradiation with the wavelength of 266 nm and the energy of 3.0 mJ/cm2. Cell adhesion, growth and gene expression of Madine darby canine kidney (MDCK) cells cultured on smooth and nanogrooved substrates were investigated. The results indicated that cells preferred to adhere and grow on nanogrooved substrate. The distribution of cell cycle for cells on smooth substrates was different from that on nanogrooved substrate. The percentage of G1 phase cells on nanogrooved substrate (48.6 ± 1.4%) was lower than that on smooth substrate (57.6 ± 4.4%), while the percentage of cells on nanogrooved substrate in S (30.2 ± 0.5%) and G2/M (21.2 ± 1.1%) phase was higher than those on smooth substrate (25.1 ± 1.5% and 17.3 ± 3.3%, respectively). Moreover, the gene expression of cyclin D1 and keratin 18, which was examined by semi-quantitative reverse transcription polymerase chain reaction (RT-PCR), was significantly enhanced by nanogrooves, with an increase of cyclin D1 mRNA by 98% and an increase of keratin 18 mRNA by 75%. In conclusion, the nanogrooved surface features on polystyrene could alter cell cycle and enhance gene expression of cyclin D1 and keratin 18 in MDCK cells, which partly explained the increased cell adhesion and growth on nanogrooved substrate.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 60577049 and 30572053), “Kua Shi Ji Program” of the Ministry of Education of China, and a Fundamental Key Project (No. 05JC14019) of the Science and Technology Commission of Shanghai Municipal Government.

References

  1. 1.
    K. MATSUZAKA, M. YOSHINARI, M. SHIMONO and T. INOUE, J. Biomed. Mater. Res. 68A (2004) 227CrossRefGoogle Scholar
  2. 2.
    A. ANDERSSON, F. BACKHED, A. V. EULER, A. R. DAHLFORS, D. SUTHERLAND and B. KASEMO, Biomaterials 24 (2003) 3427CrossRefGoogle Scholar
  3. 3.
    D. M. BRUNETTE, Exp. Cell Res. 164 (1986) 11CrossRefGoogle Scholar
  4. 4.
    G. A. DUNN and A. F. BROWN, J. Cell Sci. 83 (1986) 313Google Scholar
  5. 5.
    A. CURTIS and C. WILKINSON, Trends Biotechnol. 19 (2001) 97CrossRefGoogle Scholar
  6. 6.
    T. KONNO, H. HASUDA, K. ISHIHARA and Y. ITO, Biomaterials 26 (2005) 1381CrossRefGoogle Scholar
  7. 7.
    K. E. SCHMALENBERG and K. E. UHRICH, Biomaterials 26 (2005) 1423CrossRefGoogle Scholar
  8. 8.
    CH. H. KIM, M. S. KHIL, H. Y. KIM, H. U. LEE and K. Y. JAHNG, J. Biomed. Mater. Res. 78B (2006) 283CrossRefGoogle Scholar
  9. 9.
    Y. ZHU, M. F. LEONG, W. F. ONG, M. B. CHAN-PARK and K. S. CHIAN, Biomaterials 28 (2007) 861CrossRefGoogle Scholar
  10. 10.
    A. I. TEIXEIRA, G. A. MCKIE, J. D. FOLEY, P. J. BERTICS, P. F. NEALEY and C. J. MURPHY, Biomaterials 27 (2006) 3945CrossRefGoogle Scholar
  11. 11.
    S. ILKHANIZADEH, A. I. TEIXEIRA and O. HERMANSON, Biomaterials 28 (2007) 3936CrossRefGoogle Scholar
  12. 12.
    P. CLARK, P. CONNOLLY, A. S. G. CURTIS, J. A. T. DOW and C. D. W. WILKINSON, J. Cell Sci. 99 (1991) 73Google Scholar
  13. 13.
    A. ANDERSSON, J. BRINK, U. LIDBERG and D. S. SUTHERLAND, IEEE T. Nanobiosci. 2 (2003) 49CrossRefGoogle Scholar
  14. 14.
    K. SIMONS and S. D. FULLER, Annu. Rev. Cell Biol. 1 (1985) 243CrossRefGoogle Scholar
  15. 15.
    P. CLARK, P. CONNOLLY, A. S. G. CURTIS, J. A. T. DOW and C. D. W. WILKINSON, Development 108 (1990) 635Google Scholar
  16. 16.
    B. S. ZHU, Q. Q. ZHANG, Q. H. LUA, Y. H. XU, J. YIN, J. HU and Z. G. WANG, Biomaterials 25 (2004) 4215CrossRefGoogle Scholar
  17. 17.
    G. RADEVA, T. PETROCELLI, E. BEHREND, C. LEUNGHAGESTEIJN, J. FILMUS, J. SLINGERLAND and S. DEHAR, J. Biol. Chem. 272 (1997) 13937CrossRefGoogle Scholar
  18. 18.
    L. FONTAO, J. STUTZMANN, P. GENDRY and J. F. LAUNAY, Exp. Cell Res. 250 (1999) 298CrossRefGoogle Scholar
  19. 19.
    M. CSETE and Z. BOR, Appl. Surf. Sci. 133 (1998) 5CrossRefGoogle Scholar
  20. 20.
    M. J. DALBY, S. CHILDS, M. O. RIEHLE, H. J. H. JOHNSTONE, S. AFFROSSMAN and A. S. G. CURTIS, Biomaterials 24 (2003) 927CrossRefGoogle Scholar
  21. 21.
    S. J. LEE, J. S. CHOI, K. S. PARK, G. KHANG, Y. M. LEE and H. B. LEE, Biomaterials 25 (2004) 4699CrossRefGoogle Scholar
  22. 22.
    T. HASEGAWA, H. OGUCHI, M. MIZUNO and Y. KUBOKI, Jpn. J. Oral. Biol. 36 (1994) 383Google Scholar
  23. 23.
    R. T. GETTENS, Z. BAI and J. L. GILBERT, J. Biomed. Mater. Res. 72(A) (2005) 246CrossRefGoogle Scholar
  24. 24.
    C. W. SUH, M. Y. KIM and J. B. CHOO, J. Biotechnol. 112 (2004) 67CrossRefGoogle Scholar
  25. 25.
    R. L. JULIANO and S. HASKILL, J. Cell Biol. 120 (1993) 577CrossRefGoogle Scholar
  26. 26.
    C. RENNER, B. SACCA and L. MORODER, Biopolymers 76 (2004) 34CrossRefGoogle Scholar
  27. 27.
    N. D. GALLANT, K. E. MICHAEL and A. J. GARCIA, Mol. Biol. Cell 16 (2005) 4329CrossRefGoogle Scholar
  28. 28.
    K. S. MATLIN, B. HAUS and A. ZUK, Methods 30 (2003) 235CrossRefGoogle Scholar
  29. 29.
    G. KUMAR, Y. C. WANG, C. CO and C. C. HO, Langmuir 19 (2003) 10550CrossRefGoogle Scholar
  30. 30.
    S. LAN, M. VEISEH and M. Q. ZHANG, Biosen. Bioelectro. 20 (2005) 1697CrossRefGoogle Scholar
  31. 31.
    J. DING, R. H. ZHANG, J. X. LI, C. F. XUE and C. S. HUANG, Mol. Cell. Biochem. 287 (2006) 117CrossRefGoogle Scholar
  32. 32.
    D. TSURUTA, S. B. HOPKINSON and J. C. R. JONES, Cell Motil. Cytoskel. 54 (2003) 122CrossRefGoogle Scholar
  33. 33.
    P. A. COULOMBE and P. WONG, Nat. Cell Biol. 6(8) (2004) 699CrossRefGoogle Scholar
  34. 34.
    H. HERRMANN and U. AEBIANNU, Rev. Biochem. 73 (2004) 749CrossRefGoogle Scholar
  35. 35.
    D. DEPIANTOA and P. A. COULOMBE, Exp. Cell Res. 301 (2004) 68CrossRefGoogle Scholar
  36. 36.
    A. WASEEM, U. KARSTEN, I. M. LEIGH, P. PURKIS, N. H. WASEEM and E. B. LANE, Biochemistry 43 (2004) 1283CrossRefGoogle Scholar
  37. 37.
    S. YAMADA, D. WIRTZ and P. A. COULOMBE, J. Struct. Biol. 143 (2003) 45CrossRefGoogle Scholar
  38. 38.
    R. WINFRIED, H. ALESSANDRA, M. NIMA, X. F. FRANZ and A. JUDITH, Med. Pediatr. Oncol. 37 (2001) 357CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • C. Y. Jin
    • 1
  • B. S. Zhu
    • 2
  • X. F. Wang
    • 3
  • Q. H. Lu
    • 4
  • W. T. Chen
    • 5
  • X. J. Zhou
    • 5
  1. 1.Instrumental Analysis Center and School of Chemistry & Chemical EngineeringShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Instrumental Analysis CenterShanghai Jiao Tong UniversityShanghaiChina
  3. 3.School of Life Science and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
  4. 4.School of Chemistry & Chemical EngineeringShanghai Jiao Tong UniversityShanghaiChina
  5. 5.Ninth People’s Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations