Effect of hot water and heat treatment on the apatite-forming ability of titania films formed on titanium metal via anodic oxidation in acetic acid solutions

  • Xinyu Cui
  • Hyun-Min Kim
  • Masakazu Kawashita
  • Longbao Wang
  • Tianying Xiong
  • Tadashi Kokubo
  • Takashi Nakamura
Article

Abstract

Titanium and its alloys have been widely used for orthopedic implants because of their good biocompatibility. We have previously shown that the crystalline titania layers formed on the surface of titanium metal via anodic oxidation can induce apatite formation in simulated body fluid, whereas amorphous titania layers do not possess apatite-forming ability. In this study, hot water and heat treatments were applied to transform the titania layers from an amorphous structure into a crystalline structure after titanium metal had been anodized in acetic acid solution. The apatite-forming ability of titania layers subjected to the above treatments in simulated body fluid was investigated. The XRD and SEM results indicated hot water and/or heat treatment could greatly transform the crystal structure of titania layers from an amorphous structure into anatase, or a mixture of anatase and rutile. The abundance of Ti–OH groups formed by hot water treatment could contribute to apatite formation on the surface of titanium metals, and subsequent heat treatment would enhance the bond strength between the apatite layers and the titanium substrates. Thus, bioactive titanium metals could be prepared via anodic oxidation and subsequent hot water and heat treatment that would be suitable for applications under load-bearing conditions.

References

  1. 1.
    L. L. HENCH, R. J. SPLINTER, W. C. ALLEN and T. K. GREENLEE, J. Biomed. Mater. Res. Symp. 2 (1971) 117CrossRefGoogle Scholar
  2. 2.
    M. JARCHO, J. L. KAY, R. H. GUMAER, R. H. DOREMUS and H. P. DROBECK, J. Bioeng. 1 (1977) 79Google Scholar
  3. 3.
    H. AOKI, K. KATO, M. OGISO and T. TABATA, J. Dent. Outlook. 49 (1977) 567 Google Scholar
  4. 4.
    T. KOKUBO, M. SHIGEMATSU, Y. NAGASHIMA, T. NAKAMURA, T. YAMAMURO and S. HIGASHI, Bull. Inst. Chem. Res. Kyoto Univ. 60 (1982) 260Google Scholar
  5. 5.
    T. KOKUBO, Biomaterials 12 (1991) 155CrossRefGoogle Scholar
  6. 6.
    J. WILSON, A. YLI-URPO, H. RISO-PEKKA, in An Introduction to Bioceramics, edited by L. L. Hench and J. Wilson (World Scientific Publishing Co. Pte. Ltd., Singapore, 1993) p. 63Google Scholar
  7. 7.
    T. YAMAMURO, in An Introduction to Bioceramics, edited by L. L. Hench and J. Wilson (World Scientific Publishing Co. Pte. Ltd., Singapore, 1993) p. 89Google Scholar
  8. 8.
    M. P. THOMSEN, A. S. ERIKSSON, R. OLSSON, L. M. BJURSTEN, P. I. BRANEMARK and L.E. ERICSON, Adv. Biomater. 7, 87 (1987)Google Scholar
  9. 9.
    K. DE GROOT, R. G. T. GEENSINK, C. P. A. T. KLEIN and P. SEREKIAN, J. Biomed. Mater. Res. 21 (1987) 1375CrossRefGoogle Scholar
  10. 10.
    M. SHIRKHANZADEH, J. Mater. Sci.: Mater. Med. 3 (1992) 322CrossRefGoogle Scholar
  11. 11.
    H. ISHIZAWA and M. OGINO, J. Biomed. Mater. Res. 29 (1995) 65CrossRefGoogle Scholar
  12. 12.
    T. KOKUBO, F. MIYAJI, H.-M. KIM and T. NAKAMURA, J. Am. Ceram. Soc. 79 (1996) 1127CrossRefGoogle Scholar
  13. 13.
    Y. T. SUL, C. B. JOHANSSON, Y. JEONG and T. ALBREKTSSON, Med. Engin. Phys. 23 (2001) 329CrossRefGoogle Scholar
  14. 14.
    X. L. ZHU, K. H. KIM and Y. JEONG, Biomaterials 22 (2001) 2199CrossRefGoogle Scholar
  15. 15.
    K. A. TOMAS, J. F. KAY, S. D. COOK and M. JARCHO, J. Biomed. Mater. Res. 21 (1987) 1395CrossRefGoogle Scholar
  16. 16.
    W. R. LACEFIELD, in An Introduction to Bioceramics, edited by L. L. Hench and J. Wilson (World Scientific Publishing Co. Pte. Ltd., Singapore, 1993) p. 223Google Scholar
  17. 17.
    K. A. MANN, A. A. EDIDIN, R. K. KINOSHITA and M. T. MANLEY, J. Appl. Biomater. 5 (1994) 285CrossRefGoogle Scholar
  18. 18.
    T. KOKUBO, H.-M. KIM and M. KAWASHITA, Biomaterials 24 (2003) 2161CrossRefGoogle Scholar
  19. 19.
    T. KOKUBO, H.-M. KIM, M. KAWASHITA and T. NAKAMURA, J. Mater. Sci.: Mater. Med. 15 (2004) 99CrossRefGoogle Scholar
  20. 20.
    T. Y. XIONG, X. Y. CUI, H.-M. KIM, M. KAWASHITA, T. KOKUBO, J. WU, H. Z. JIN and T. NAKAMURA, Key Eng. Mater. 254–6 (2004) 375Google Scholar
  21. 21.
    M. KAWASHITA, X. Y. CUI, H.-M. KIM, T. KOKUBO and T. NAKAMURA, Key Eng. Mater. 254–256 (2004) 459CrossRefGoogle Scholar
  22. 22.
    M. UCHIDA, H.-M. KIM, T. KOKUBO, S. FUJIBAYASHI and T. NAKAMURA, J. Biomed. Mater. Res. (Appl. Biomater.) 63 (2002) 522CrossRefGoogle Scholar
  23. 23.
    M. UCHIDA, H.-M. KIM, T. KOKUBO, S. FUJIBAYASHI and T. NAKAMURA, J. Biomed. Mater. Res. 64A (2003) 164CrossRefGoogle Scholar
  24. 24.
    M. KAMITAKAHARA, M. KAWASHITA, N. MIYATA, T. KOKUBO and T. NAKAMURA, J. Mater. Sci.: Mater. Med. 14 (2003) 1067CrossRefGoogle Scholar
  25. 25.
    M. KAMITAKAHARA, M. KAWASHITA, N. MIYATA, T. KOKUBO and T. NAKAMURA, Biomaterials. 24 (2003) 1357CrossRefGoogle Scholar
  26. 26.
    T. KOKUBO, H. KUSHITANI, S. SAKKA, T. KITSUGI and T. YAMAMURO, J. Biomed. Mater. Res. 24 (1990) 721CrossRefGoogle Scholar
  27. 27.
    U. POSSET, E. LOCKLIN, R. THULL and W. KIEFER, J. Biomed. Mater. Res. 40 (1998) 640CrossRefGoogle Scholar
  28. 28.
    K. SHIMIZU, H. IMAI, H. HIRASHIMA and K. TSUKUMA, Thin Solid Films 351 (1999) 220CrossRefGoogle Scholar
  29. 29.
    D. S. SEO, J. K. LEE and H. KIM, J. Cryst. Growth. 233 (2001) 298CrossRefGoogle Scholar
  30. 30.
    S. YAMABI and H. IMAI, Chem. Mater. 14 (2002) 609CrossRefGoogle Scholar
  31. 31.
    A. MATSUDA, Y. KOTANI, T. KOGURE, M. TATSUMISAGO and T. MINAMI, J. Am. Ceram. Soc. 83 (2000) 229Google Scholar
  32. 32.
    J. M. WU, S. HAYAKAWA, K. TSURU and A. OSAKA, J. Am. Ceram. Soc. 87 (2004) 1635CrossRefGoogle Scholar
  33. 33.
    X. X. WANG, S. HAYAKAWA, K. TSURU and A. OSAKA, J. Biomed. Mater. Res. 52 (2000) 171CrossRefGoogle Scholar
  34. 34.
    P. LI, I. KANGASNIEMI, K. DE GROOT and T. KOKUBO, J. Am. Ceram. Soc. 77, 1307 (1994)CrossRefGoogle Scholar
  35. 35.
    P. LI, C. OHTSUKI, T. KOKUBO, K. NAKANISHI, N. SOGA, T. NAKAMURA, T. YAMAMURO and K. De GROOT, J. Biomed. Mater. Res. 28 (1994) 7CrossRefGoogle Scholar
  36. 36.
    H. TAKADAMA, H.-M. KIM, T. KOKUBO and T. NAKAMURA, J. Biomed. Mater. Res. 55 (2001) 185CrossRefGoogle Scholar
  37. 37.
    H. TAKADAMA, H.-M. KIM, T. KOKUBO and T. NAKAMURA, J. Biomed. Mater. Res. 57 (2001) 441CrossRefGoogle Scholar
  38. 38.
    J. YANG, S. MEI and J. M. F. FERREIRA, J. Am. Ceram. Soc. 83 (2000) 1361Google Scholar
  39. 39.
    S. NISHIGUCHI, T. NAKAMURA, M. KOBAYASHI, H.-M. KIM, F. MIYAJI and T. KOKUBO, Biomaterials. 20 (1999) 491CrossRefGoogle Scholar
  40. 40.
    S. NISHIGUCHI, H. KATO, H. FUJITA, H.-M. KIM, F. MIYAJI, T. KOKUBO and T. NAKAMURA, J. Biomed. Mater. Res. 48B, 689 (1999)CrossRefGoogle Scholar
  41. 41.
    B. C. YANG, M. UCHIDA, H.-M. KIM, X. D. ZHANG and T. KOKUBO, Biomaterials. 25 (2004) 1003CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Xinyu Cui
    • 1
  • Hyun-Min Kim
    • 2
  • Masakazu Kawashita
    • 3
  • Longbao Wang
    • 1
  • Tianying Xiong
    • 1
  • Tadashi Kokubo
    • 4
  • Takashi Nakamura
    • 5
  1. 1.Institute of Metal ResearchChinese Academy of SciencesShenyangChina
  2. 2.Department of Ceramic Engineering, School of Advanced Materials EngineeringYonsei UniversitySeoulSouth Korea
  3. 3.Center for Research Strategy and SupportTohoku UniversityAobaJapan
  4. 4.Department of Biomedical Sciences, College of Life and Health SciencesChubu UniversityKasugaiJapan
  5. 5.Department of Orthopedic Surgery, Graduate School of MedicalKyoto UniversitySakyo-kuJapan

Personalised recommendations