Immobilization of a bone and cartilage stimulating peptide to a synthetic bone graft



A synthetic peptide fragment of human collagen type I (BCSP™-1) was linked to the surface of a commercially available ceramic in an effort to improve the properties of the bone graft substitute to accelerate local healing. BCSP™-1 was covalently immobilized on the surface of the ceramic via the linkers 3-aminopropyl-triethoxysilane (APTES) and suberic acid bis-N-hydroxysuccinimide ester (DSS). The chosen chemistry was non-cytotoxic. A rat calvaria cell assay using alkaline phosphatase (ALP) as an osteoblast differentiation marker, showed that modifying the surface of the ceramic was enough to enhance ALP activity, although the total cell population on the surface decreased. A significant increase in ALP activity/cell was noted with serum albumin bound to the surface, however, the BCSP™-1 bound surface exhibited an even greater ALP activity that showed a surface concentration dependent trend. An optimal BCSP™-1 surface density in the range of 0.87–2.24 nmol/cm2 elicited the maximum ALP activity/cell at day 6 of culture. The peptide bound ceramic generated an ALP activity/cell that was roughly 3-fold higher than the non-modified ceramic and 2-fold higher than the APTES-grafted ceramic.


High Performance Liquid Chromatography Osteoprogenitor Cell High Performance Liquid Chromatography Assay Synthetic Bone Graft Disuccinimidyl Suberate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This project was funded by Materials and Manufacturing Ontario, and the Ontario Premier’s Research Excellence Award. The assistance of Dennis Sindrey of Millenium Biologix with the rat calvaria model is gratefully acknowledged.


  1. 1.
    C. LAURENCIN, Bone Graft Substitutes (West Conshohocken, PA: ASTM International, 2003)Google Scholar
  2. 2.
    C. LAURENCIN, Orthop. Netw. News 10 (1999) 10Google Scholar
  3. 3.
    K. A. HING, Phil. Trans. R. Soc. Lond. Ser. A – Math. Phys. Eng. Sci. 362 (2004) 2821CrossRefGoogle Scholar
  4. 4.
    K. ZURLINDEN, M. LAUB and H. P. JENNISSEN, Mater. Werkstofftech. 36 (2005) 820CrossRefGoogle Scholar
  5. 5.
    M. C. PORTE-DURRIEU, C. LABRUGERE, F. VILLARS, F. LEFEBVRE, S. DUTOYA, A. GUETTE, L. BORDENAVE and C. BAQUEY, J. Biomed. Mater. Res. 46 (1999) 368CrossRefGoogle Scholar
  6. 6.
    M. C. DURRIEU, S. PALLU, F. GUILLEMOT, R. BAREILLE, J. AMEDEE, C. BAQUEY, C. LABRUGERE and M. DARD, J. Mater. Sci.: Mater. Med. 15 (2004) 779CrossRefGoogle Scholar
  7. 7.
    D. DAVIS, C. GIANNOULIS, R. JOHNSON and T. DESAI, Biomaterials 23 (2002) 4019CrossRefGoogle Scholar
  8. 8.
    K. L. KILPADI, P. L. CHANG and S. L. BELLIS, J. Biomed. Mater. Res. 57 (2001) 258CrossRefGoogle Scholar
  9. 9.
    T. MATSUURA, R. HOSOKAWA, K. OKAMOTO, T. KIMOTO and Y. AKAGAWA, Biomaterials 21 (2000) 1121CrossRefGoogle Scholar
  10. 10.
    A. A. SAWYER, D. M. WEEKS, S. S. KELPKE, M. S. MCCRACKEN and S. L. BELLIS, Biomaterials 26 (2005) 7046CrossRefGoogle Scholar
  11. 11.
    A. A. SAWYER, K. M. HENNESSY and S. L. BELLIS, Biomaterials 26 (2005) 1467CrossRefGoogle Scholar
  12. 12.
    D. ITOH, S. YONEDA, S. KURODA, H. KONDO, A. UMEZAWA, K. OHYA, T. OHYAMA and S. KASUGAI, J. Biomed. Mater. Res. 62 (2002) 292CrossRefGoogle Scholar
  13. 13.
    M. GILBERT, C. M. GIACHELLI and P. S. STAYTON, J. Biomed. Mater. Res. Part A 67A (2003) 69CrossRefGoogle Scholar
  14. 14.
    R. FUJISAWA, M. MIZUNO, Y. NODASAKA and Y. KUBOKI, Matrix Biol. 16 (1997) 21CrossRefGoogle Scholar
  15. 15.
    M. GILBERT, W. J. SHAW, J. R. LONG, K. NELSON, G. P. DROBNY, C. M. GIACHELLI and P. S. STAYTON, J. Biol. Chem. 275 (2000) 16213CrossRefGoogle Scholar
  16. 16.
    D. A. PULEO and A. NANCI, Biomaterials 20 (1999) 2311CrossRefGoogle Scholar
  17. 17.
    A. A. SAWYER, K. M. HENNESSY and S. L. BELLIS, Biomaterials 28 (2007) 383CrossRefGoogle Scholar
  18. 18.
    S. LANGSTAFF, M. SAYER, T. J. N. SMITH and S. M. PUGH, Biomaterials 22 (2001) 135CrossRefGoogle Scholar
  19. 19.
    S. LANGSTAFF, M. SAYER, T. J. N. SMITH, S. M. PUGH, S. A. M. HESP and W. T. THOMPSON, Biomaterials 20 (1999) 1727CrossRefGoogle Scholar
  20. 20.
    M. P. LYNCH, J. L. STEIN, G. S. STEIN and J. B. LIAN, Exp. Cell Res. 216 (1995) 35CrossRefGoogle Scholar
  21. 21.
    A. G. ANDRIANARIVO, J. A. ROBINSON, K. G. MANN and R. P. TRACY, J. Cell. Physiol. 153 (1992) 256CrossRefGoogle Scholar
  22. 22.
    D. SINDREY, S. M. PUGH and T. J. N. SMITH, US Patent, 2005/0288229 A1 (2005)Google Scholar
  23. 23.
    G. STEIN, J. LIAN, J. STEIN, A. VAN WIJNEN, B. FRENKEL and M. MONTECINO, “Mechanisms regulating osteoblast proliferation and differentiation.” In Principles of Bone Biology, edited by J. P. Bilezikian, L. G. Raisza and G. A. Rodan (New York: Academic Press, 1996), p. 69Google Scholar
  24. 24.
    J. AUBIN and F. LIU, “The osteoblast lineage.” In Principles of Bone Biology, edited by J. P. Bilezikian, L. G. Raisz and G. A. Rodan (New York: Academic Press, 1996), p. 51Google Scholar
  25. 25.
    M. STOCKER, Micropor. Mater. 6 (1996) 235CrossRefGoogle Scholar
  26. 26.
    Z. P. ZHANG, R. YOO, M. WELLS, T. P. BEEBE, R. BIRAN and P. TRESCO, Biomaterials 26 (2005) 47CrossRefGoogle Scholar
  27. 27.
    L. MALAVAL, F. LIU, P. ROCHE and J. E. AUBIN, J. Cell. Biochem. 74 (1999) 616CrossRefGoogle Scholar
  28. 28.
    K. HEALY, C. THOMAS, A. REZANIA, J. KIM, P. MCKEOWN, B. LOM and P. HOCKBERGER, Biomaterials 17 (1996) 195CrossRefGoogle Scholar
  29. 29.
    H. A. DECLERQ, R. M. H. VERBEECK, L. DE RIDDER, E. H. SCHACHT and M. J. CORNELISSEN, Biomaterials 26 (2005) 4964CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Chemical EngineeringQueen’s UniversityKingstonCanada

Personalised recommendations