Biofunctionalized poly(ethylene glycol)-block-poly(ε-caprolactone) nanofibers for tissue engineering

  • Dirk Grafahrend
  • Julia Lleixa Calvet
  • Jochen Salber
  • Paul D. Dalton
  • Martin Moeller
  • Doris Klee


Electrospun fibers with contrasting cell adhesion properties provided non-woven substrates with enhanced in vitro acceptance and controllable cell interactions. Poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-b-PCL) block copolymers with varying segment lengths were synthesized in two steps and characterized by NMR and GPC. A cell adhesive peptide sequence, GRGDS, was covalently coupled to the PEG segment of the copolymer in an additional step. The suitability of polymers with molecular weights ranging from 10 to 30 kDa for electrospinning and the influences of molecular weight, solvent, and concentration on the resulting morphologies were investigated. Generally, electrospun fibers were obtained by electrospinning polymers with molecular weight larger than 25 kDa and concentrations of 10 wt%. Methanol/chloroform (25/75, v/v) mixtures proved to be good solvent systems for electrospinning the PEG-b-PCL and resulted in hydrophilic, non-woven fiber meshes (contact angle 30°). The mesh without cell adhesive GRGDS ligands showed no attachment of human dermal fibroblasts after 24 h cell culture demonstrating that the particular combination of the material and electrospinnig conditions yielded protein and cell repellent properties. The GRGDS immobilized mesh showed excellent cellular attachment with fibroblasts viable after 24 h with spread morphology. Electrospun nanofibers based on block copolymers have been produced which are capable of specifically targeting cell receptor binding and are a promising material for tissue engineering and controlling cell material interactions.


  1. 1.
    S. RAMAKRISHNA, K. FUJIHARA, W.-E. TEO, T.-C. LIM and Z. MA, in “An Introduction to Electrospinning and Nanofibers” (World Scientific Publishing Co. Pvt. Ltd., Singapore, 2005) p. 291Google Scholar
  2. 2.
    M. NAVARRO, C. APARICIO, M. CHARLES-HARRIS, M. P. GINEBRA, E. ENGEL and J. A. PLANELL, Adv. Polym. Sci. 200 (2006) 209CrossRefGoogle Scholar
  3. 3.
    U. HERSEL, C. DAHMEN and H. KESSLER, Biomaterials 24 (2003) 4385CrossRefGoogle Scholar
  4. 4.
    D. H. RENEKER, A. L. YARIN, H. FONG and S. KOOMBHONGSE, J. Appl. Phys. 87 (2000) 4531CrossRefGoogle Scholar
  5. 5.
    Y. M. SHIN, M. M. HOHMAN, M. P. BRENNER and G. C. RUTLEDGE, Appl. Phys. Lett. 78 (2001) 1149CrossRefGoogle Scholar
  6. 6.
    M. M. HOHMAN, M. SHIN, G. C. RUTLEDGE and M. P. BRENNER, Phys. Fluids 13(8) (2001) 2201CrossRefGoogle Scholar
  7. 7.
    M. M. HOHMAN, M. SHIN, G. C. RUTLEDGE and M. P. BRENNER, Phys. Fluids 13(8) (2001) 2221CrossRefGoogle Scholar
  8. 8.
    S. V. FRIDRIKH, J. H YU, M. P. BRENNER and G. C. RUTLEDGE, Phys. Rev. Lett. 90 (2003) 144CrossRefGoogle Scholar
  9. 9.
    J. J. FENG, Phys. Fluids 14 (2002) 3912CrossRefGoogle Scholar
  10. 10.
    J. J FENG, J. Non-Newtonian Fluid Mech. 116 (2003) 55CrossRefGoogle Scholar
  11. 11.
    A. L YARIN, S. KOOMBHONGSE and D. H. RENEKER, J. Appl. Phys. 90 (2001) 4836CrossRefGoogle Scholar
  12. 12.
    J. A. MATTHEWS, G. E. WNEK, D. G. SIMPSON and G. L. BOWLIN, Biomacromolecules 3 (2002) 232CrossRefGoogle Scholar
  13. 13.
    Y. Z. ZHANG, H. OUYANG, C. T. LIM, S. RAMAKRISHNA and Z.-M. HUANG, J. Biomed. Mater. Res. 72B (2005) 156.CrossRefGoogle Scholar
  14. 14.
    Q. P. PHAM, U. SHARMA and A. G. MIKOS, Tissue Eng. 12 (2006) 1197CrossRefGoogle Scholar
  15. 15.
    E. JULE, Y. NAGASAKI and K. KATAOKA, Langmuir 18 (2002) 10334CrossRefGoogle Scholar
  16. 16.
    B. LINNEMANN, R. ALI, T. GRIES, D. GRAFAHREND, D. KLEE, M. MOELLER and G. ROTH, Chem. Fibers Int. 55(6) (2005) 370Google Scholar
  17. 17.
    B. LINNEMANN, R. ALI, T. GRIES, D. GRAFAHREND, D. KLEE, M. MOELLER and G. ROTH, Tekstil 55(6) (2006) 299Google Scholar
  18. 18.
    P. GUPTA, C. ELKINS, T. E. LONG and G. WILKES, Polymer 46 (2005) 4799Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Dirk Grafahrend
    • 1
  • Julia Lleixa Calvet
    • 1
  • Jochen Salber
    • 1
  • Paul D. Dalton
    • 1
    • 2
  • Martin Moeller
    • 1
  • Doris Klee
    • 1
  1. 1.DWI e.V. and Institute of Technical and Macromolecular ChemistryRWTH AachenAachenGermany
  2. 2.School of Biological Sciences, Bassett Cr EastUniversity of SouthamptonSouthamptonUK

Personalised recommendations