Journal of Materials Science: Materials in Medicine

, Volume 19, Issue 2, pp 567–575

EDC/NHS-crosslinked type II collagen-chondroitin sulfate scaffold: characterization and in vitro evaluation



Three-dimensional biodegradable porous type II collagen scaffolds are interesting materials for cartilage tissue engineering. This study reports the preparation of porous type II collagen-chondroitin sulfate (CS) scaffold using variable concentrations of 1-ethyl-3(3-dimethyl aminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS). The physico-chemical properties and ultrastructural morphology of the collagen scaffolds were determined. Then, isolated chondrocytes were cultured in porous type II collagen scaffolds either in the presence and/or absence of covalently attached CS up to 14 days. Cell proliferation, the total amount of proteoglycans and type II collagen retained in the scaffold and chondrocytes morphology were evaluated. The results suggest that EDC-crosslinking improves the mechanical stability of collagen-CS scaffolds with increasing EDC concentration. Cell proliferation and the total amount of proteoglycans and type II collagen retained in the scaffolds were higher in type II collagen-CS scaffolds. Histological analysis showed the formation of a denser cartilaginous layer at the scaffold periphery. Scanning electron microscopy (SEM) revealed chondrocytes distributed the porous surface of both scaffolds maintained their spherical morphology. The results of the present study also indicate that type II collagen-CS scaffolds have potential for use in tissue engineering.

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.School of Food Science and TechnologySouthern Yangtze UniversityWuxiChina

Personalised recommendations