EDC/NHS-crosslinked type II collagen-chondroitin sulfate scaffold: characterization and in vitro evaluation

Article

Abstract

Three-dimensional biodegradable porous type II collagen scaffolds are interesting materials for cartilage tissue engineering. This study reports the preparation of porous type II collagen-chondroitin sulfate (CS) scaffold using variable concentrations of 1-ethyl-3(3-dimethyl aminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS). The physico-chemical properties and ultrastructural morphology of the collagen scaffolds were determined. Then, isolated chondrocytes were cultured in porous type II collagen scaffolds either in the presence and/or absence of covalently attached CS up to 14 days. Cell proliferation, the total amount of proteoglycans and type II collagen retained in the scaffold and chondrocytes morphology were evaluated. The results suggest that EDC-crosslinking improves the mechanical stability of collagen-CS scaffolds with increasing EDC concentration. Cell proliferation and the total amount of proteoglycans and type II collagen retained in the scaffolds were higher in type II collagen-CS scaffolds. Histological analysis showed the formation of a denser cartilaginous layer at the scaffold periphery. Scanning electron microscopy (SEM) revealed chondrocytes distributed the porous surface of both scaffolds maintained their spherical morphology. The results of the present study also indicate that type II collagen-CS scaffolds have potential for use in tissue engineering.

Notes

Acknowledgments

We thank Dr. Seronei chelulei chesion for the kind assistance in reviewing and amending an earlier manuscript and proposing creative suggestions.

References

  1. 1.
    R. DOROTKA, U. WINDBERGER, K. MACFELDA, U. BINDREITER, C. TOMA and S. NEHRER, Biomaterials 26 (2005) 3617CrossRefGoogle Scholar
  2. 2.
    D. W. HUTMACHER, Biomaterials 21 (2000) 2529CrossRefGoogle Scholar
  3. 3.
    P. ANGELE, J. ABKE, R. KUJAT, H. FALTERMEIER, D. SCHUMANN, M. NERLICH, B. KINNER, G. ENGLERT, Z. RUSZCZAK, R. MEHRL and R. MUELLER, Biomaterials 25 (2004) 2381CrossRefGoogle Scholar
  4. 4.
    V. CHARULATHA and A. RAJARAM, Biomaterials 24, 759 (2003)CrossRefGoogle Scholar
  5. 5.
    J. S. PIEPER, T. HAFMANS, J. H. VEERKAMP and T. H. van KUPPEVELT, Biomaterials 21 (2000) 581CrossRefGoogle Scholar
  6. 6.
    C. R. LEE, A. J. GRODZINSKY and M. SPECTOR, Biomaterials 22 (2001) 3145CrossRefGoogle Scholar
  7. 7.
    J. L. C. van SUSANTE, J. PIEPER, P. BUMA, T. H. van KUPPEVELT, H. van BEUNINGEN, P. M. van der KRAAN, J. H. VEERKAMP, W. B. van den BERG and R. P.H. VETH, Biomaterials 22 (2001) 2359CrossRefGoogle Scholar
  8. 8.
    E. J. MILLER, Biochemistry 9 (1971) 1652CrossRefGoogle Scholar
  9. 9.
    U. K. LAEMMLI, Nature 227 (1970) 680CrossRefGoogle Scholar
  10. 10.
    J. S. PIEPER, P. M. van der KRAAN, T. HAFMANS, J. KAMP, P. BUMA, J. L.C. van SUSANTE, W. B. van den BERG, J. H. VEERKAMP and T. H. van KUPPEVELT, Biomaterials 23 (2002) 3183CrossRefGoogle Scholar
  11. 11.
    T. OHNO, K. TANISAKA, Y. HIRAOKA, T. USHIDA, T. TAMAKI and T. TATEISHI, Mater. Sci. Technol. C. 24 (2004) 407Google Scholar
  12. 12.
    C. H. A. van de LEST, E. M. M. VERSTEEG, J. H. VEERKAMP and T. H. van KUPPEVELT, Biochim. Biophys. Acta 1201 (1994) 305Google Scholar
  13. 13.
    Y. J. KIM, R. L. SAH and A. J. GRODZINSKY, Anal. Biochem. 174 (1988) 168CrossRefGoogle Scholar
  14. 14.
    C. RIGO, D. J. HARTMANN and A. BAIRATI, Biochem. Biophys. Acta 1572 (2002) 77Google Scholar
  15. 15.
    J. BAUM and B. BRODSKY, Curr. Opin. Struct. Biol. 9 (1990) 122CrossRefGoogle Scholar
  16. 16.
    K. BECK and B. BRODSKY, J. Struct. Biol. 122 (1998) 7CrossRefGoogle Scholar
  17. 17.
    K. GELSE, E. POSCHL, and T. AIGNER, Adv. Drug Deliver. Rev. 55 (2003) 1531CrossRefGoogle Scholar
  18. 18.
    R. USHA and T. RAMASAMI, Thermochim. Acta 356 (2000) 59CrossRefGoogle Scholar
  19. 19.
    M. J. B. WISSINK, R. BEERNINK, J. S. PIEPER, A. A. POOT, G. H. M. ENGBERS, T. BEUGELING, W. G. van AKEN, J. FEIJEN, Biomaterials. 22 (2001) 151CrossRefGoogle Scholar
  20. 20.
    W. A. BUBNIS and C. M. OFNER, Anal. Biochem. 207 (1992) 129CrossRefGoogle Scholar
  21. 21.
    E. J. MILLER, Biochemistry 17 (1973) 3153CrossRefGoogle Scholar
  22. 22.
    C. S. VISCONTI, K. KAVALKOVICH, J. J. WU and C. NIYIBIZI, Arch. Biochem. Biophys. 328 (1996) 135CrossRefGoogle Scholar
  23. 23.
    A. MITRAKI, S. MILLER and M. J. van RAAIJ, J. Struct. Biol. 137 (2002) 236CrossRefGoogle Scholar
  24. 24.
    R. USHA and T. RAMASAMI, Colloids Surf. B: Biointerfaces. 41 (2005) 21CrossRefGoogle Scholar
  25. 25.
    J. S. PIEPER, P. B. van WACHEM, M. J. A. van LUYN, L. A. BROUWER, T. HAFMANS, J. H. VEERKAMP and T. H. van KUPPEVELT, Biomaterials 21 (2000) 1689CrossRefGoogle Scholar
  26. 26.
    D. W. HUTMACHER, Biomaterials 21 (2000) 2529CrossRefGoogle Scholar
  27. 27.
    J. S. PIEPER and P. M. Van der KRAAN, Biomaterials 23 (2002) 3183CrossRefGoogle Scholar
  28. 28.
    J. S. PIEPER, A. OOSTERHOF, P. J. DIJKSTRA, J. H. VEERKAMP and T. H. Van KUPPEVELT, Biomaterials 20 (1999) 847CrossRefGoogle Scholar
  29. 29.
    C. R. LEE, A. J. GRODZINSKY and M. SPECTOR, Biomaterials 22 (2001) 3145CrossRefGoogle Scholar
  30. 30.
    C. R. LEE, A. J. GRODZINSKY, H. P. HSU and M. SPECTOR, J. Orthop. Res. 21 (2003) 272CrossRefGoogle Scholar
  31. 31.
    T. OHNO, K. TANISAKA, Y. HIRAOKA, T. USHIDA, T. TAMAKI and T. TATEISHI, Mater. Sci. Eng. C. 24 (2004) 407CrossRefGoogle Scholar
  32. 32.
    Y. S. LI, H. L. WEN, Y. C. HSIN, C. C. HUANG, K. C. CHING, P. L. HSIAO and C. H. YU, Biomaterials 28 (2007) 3437CrossRefGoogle Scholar
  33. 33.
    C. G. WILSON, L. J. BONASSAR and S. S. KOHLES, Arch. Biochem. Biophys. 408 (2002) 246CrossRefGoogle Scholar
  34. 34.
    S. SUN, I. TITUSHKIN and M. CHO, Bioelectrochemistry 69 (2006) 133CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.School of Food Science and TechnologySouthern Yangtze UniversityWuxiChina

Personalised recommendations