Advertisement

In vitro corrosion behaviour of Mg alloys in a phosphate buffered solution for bone implant application

  • Liping Xu
  • Erlin Zhang
  • Dongsong Yin
  • Songyan Zeng
  • Ke Yang
Article

Abstract

The corrosion behaviour of Mg–Mn and Mg–Mn–Zn magnesium alloy in a phosphate buffered simulated body fluid (SBF) has been investigated by electrochemical testing and weight loss experiment for bone implant application. Long passivation stage and noble breakdown potential in the polarization curves indicated that a passive layer could be rapidly formed on the surface of magnesium alloy in the phosphate buffered SBF, which in turn can protect magnesium from fast corrosion. Surfaces of the immersed magnesium alloy were characterized by SEM, EDS, SAXS and XPS. Results have shown that Mg–Mn and Mg–Mn–Zn alloy were covered completely by an amorphous Mg-containing phosphate reaction layer after 24 h immersion. The corrosion behaviour of magnesium alloys can be described by the dissolving of magnesium through the reaction between magnesium and solution and the precipitating of Mg-containing phosphate on the magnesium surface. Weight loss rate and weight gain rate results have indicated that magnesium alloys were corroded seriously at the first 48 h while Mg-containing phosphate precipitated fast on the surface of magnesium alloy. After 48–96 h immersion, the corrosion reaction and the precipitation reaction reach a stable stage, displaying that the phosphate layer on magnesium surface, especially Zn-containing phosphate layer could provide effective protection for magnesium alloy.

Keywords

Magnesium Alloy Energy Dispersive Spectroscopy Simulated Body Fluid Immersion Time Reaction Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

One of authors (Erlin Zhang) would like to thank the financial support from Institute of Metal Research and Chinese Academy of Sciences.

References

  1. 1.
    F. WITTE, V. KAESE, H. HAFERKAMP, E. SWITZER, A. MEYER-LINDENBERG, C. J. WIRTH and H. WINDHAGEN, Biomaterials 26 (2005) 3557CrossRefGoogle Scholar
  2. 2.
    E. D. MCBRIDE, J. Am. Med. Assoc. 111 (1938) 2464Google Scholar
  3. 3.
    V. V. TROITSKII and D. N. TSITRIN, Khirurgiia 8 (1944) 41Google Scholar
  4. 4.
    M. S. ZNAMENSKII, Khirurgiia 12 (1945) 60Google Scholar
  5. 5.
    H. INOUE, K. SUGAHARA, A. YAMAMOTO and H. TSUBAKINO, Corrosion Science, 44 (2002) 603CrossRefGoogle Scholar
  6. 6.
    G. L. SONG, A. L. BOWLES and D. H. STJOHN, Mater. Sci. Eng. A A366 (2004) 74–86Google Scholar
  7. 7.
    B. HEUBLEIN, R. ROHDE and V. KAESE, Heart 89 (2003) 651CrossRefGoogle Scholar
  8. 8.
    H. KUWAHARA, Y. Al-ABDULLAT and M. OHTA, Mater Sci. Forum 350–351 (2000) 349Google Scholar
  9. 9.
    H. KUWAHARA, N. MAZAKI, M. MABUCHI, C. WEIN and T. AIZAWAET, Mater Sci. Forum 419–422 (2003) 1007CrossRefGoogle Scholar
  10. 10.
    D. ZAFFE, C. BERTOLDI and U. Consolo, Biomaterials 25 (2004) 3837CrossRefGoogle Scholar
  11. 11.
    www.magnesium-elektron.com, Elektron WE43Google Scholar
  12. 12.
    F. WITTE, J. FISCHER, J. NELLESEN, H. CROSTACK, V. KAESE, A. PISCH, F. BECKMANN and H. WINDHAGEN, Biomaterials, 27 (2006) 1013CrossRefGoogle Scholar
  13. 13.
    http://www.portfolio.mvm.ed.ac.uk/studentwebs/session2/group29/mangnut.htmGoogle Scholar
  14. 14.
    Jef, A. Helsen and H.J. Breme, in “Metals as biomaterials” (Chichester: John Viley & Sons, 1998) p. 268Google Scholar
  15. 15.
    http://www.healingwithnutrition.com/mineral.htm . Google Scholar
  16. 16.
    http://www.yestonutrition.com/html. Google Scholar
  17. 17.
    http://www.merck.com/pubs/mmanual_home/sec12/135.htmGoogle Scholar
  18. 18.
    http://www.nutrition.org/nutinfo/Google Scholar
  19. 19.
    M. M. Avedesian and H. Baker, in “ASM specialty handbook, Magnesium and magnesium alloys” (The Materials Information Society, 1990), p. 15Google Scholar
  20. 20.
    G. N. Yu, E. L. Zhang, L. P. Xu and K. Yang, in “2006 Beijing International Materials Week”, June 25–30, Beijing, China, p. 331Google Scholar
  21. 21.
    K. Z. CHONG and T. S. SHIH, Mater. Chem. Phy. 80 (2003) 191CrossRefGoogle Scholar
  22. 22.
    G. LORIN. in Phosphating of metals (Middlesex: Finishing publications LTD, 1974), p. 32Google Scholar
  23. 23.
    L. KOUISNI, M. AZZI, M. ZERTOUBI, F. DALARD and S. MAXIMOVITCH, Surf. Coat. Tech. 185 (2004) 58CrossRefGoogle Scholar
  24. 24.
    S. R. KIM, J. H. LEE, Y. T. KIM, D. H. RIU, S. J. JUNG, Y. J. LEE, S. C. CHUNG and Y. H. KIM, Biomaterials 24 (2003) 1389CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Liping Xu
    • 1
  • Erlin Zhang
    • 1
  • Dongsong Yin
    • 2
  • Songyan Zeng
    • 2
  • Ke Yang
    • 1
  1. 1.Institute of Metal ResearchChinese Academy of SciencesShenyangChina
  2. 2.School of Materials Science and EngineeringHarbin Institute of TechnologyHarbinChina

Personalised recommendations