Poly(HEMA) hydrogels with controlled pore architecture for tissue regeneration applications

  • Hana StudenovskáEmail author
  • Miroslav Šlouf
  • František Rypáček


The technique for fabrication of soft porous hydrogels, in which both the size and the orientation of inner pores can be controlled, was developed. Three-dimensional hydrophilic gels based on poly[2-hydroxyethyl methacrylate] are designed as scaffolds for regeneration of soft tissues, e.g., nerve tissue. Anisotropic macropores of the size ranging from 10 to 50 μm were formed (1) by using a porogen-leaching method with a solid organic porogen, (2) by phase-separation during gelation in solvent-nonsolvent mixture, or (3) by combination of solid porogen elimination and phase-separation. As a porogen, poly(l-lactide) fibers were applied and consequently washed away under mild conditions to obtain desired spatial orientation of pores. Highly water-swollen polymer gels were characterized with high pressure (low vacuum) scanning electron microscopy (AquaSEM). The morphology of voids remaining after removing the solid PLLA porogen (the macropores) was clearly shown.


PLLA Pore Architecture Hydrogel Scaffold Equilibrium Water Content Sodium Hydroxide Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Support from the Grant Agency of the Czech Republic (Grant No. 203/04/P124), Ministry of Education of CR Research Centers Program (Grant No.: 1M 0538) and “EXPERTISSUES” EC 6th FP NMP-3 NoE No.: 500283-2 is acknowledged.


  1. 1.
    E. G. FINE, R. F. VALENTINI and P. AEBISCHER, in Principles of Tissue Engineering, 2nd ed., edited by R. P. LANZA, R. LANGER and J. VACANTI (Academic Press, USA, 2000) p. 785Google Scholar
  2. 2.
    D. N. ADAMS, E. Y. KAO, C. L. HYPOLITE, M. D. DISTEFANO, W. S. HU and P. C. LETOURNEAU, J. Neurobiol. 62(1) (2005) 134CrossRefGoogle Scholar
  3. 3.
    R. V. BELLAMKONDA, Biomaterials 27 (2006) 3515Google Scholar
  4. 4.
    K. K. WANG, I. R. NEMETH, B. R. SECKEL and D. P. CHAKALIS-HALEY, Microsurgery 18 (1998) 270CrossRefGoogle Scholar
  5. 5.
    A. L. WOOLLEY, J. P. HOLLOWELL and K. M.RICK, Otolaryngol. Head Neck Surg. 103 (1990) 509Google Scholar
  6. 6.
    J. C. SCHENSE, J. BLOCH, P. AERBISCHER and J. A. HUBBELL, Nat. Biotechnol. 18 (2000) 415CrossRefGoogle Scholar
  7. 7.
    S. E. SAKIYAMA, J. C. SCHENSE and J. A. HUBBELL, FASEB J. 13 (1999) 2214Google Scholar
  8. 8.
    G. W. PLANT, S. WOERLY and A. R.HARVEY, Exp. Neurol. 143 (1997) 287CrossRefGoogle Scholar
  9. 9.
    O. WICHTERLE and D. LÍM, Nature 185 (1960) 117CrossRefGoogle Scholar
  10. 10.
    S. T. CARBONETTO, M. M. GRUVER and D. C. TURNER, Science 216 (1982) 897CrossRefGoogle Scholar
  11. 11.
    S. WOERLY, K. ULBRICH, V. CHYTRY, K. SMETANA, P. PETROVICKY, B. RIHOVA and D. J. MORASSUTI, Cell Transplant. 2(3) (1993) 229Google Scholar
  12. 12.
    J. VACÍK, K. ULBRICH, J. EXNER and J. KOPEČEK, Chem. Commun. 43 (1978) 1221Google Scholar
  13. 13.
    D. KUBIES, F. RYPÁČEK, J. KOVÁŘOVÁ and F. LEDNICKÝ, Biomaterials 21(5) (2000) 529CrossRefGoogle Scholar
  14. 14.
    G. B. KHARAS, F. SANCHEZ-RIERA and D. K. SEVERSON, in Plastics from Microbes, edited by D. P. MOBLEY (Hanser Publishers, Munich, Vienna, New York, 1994) p. 93Google Scholar
  15. 15.
    M. E. HOQUE, D. W. HUTMACHER, W. FENG, S. LI, M. H. HUANG, M. VERT and Y. S. WONG, J. Biomater. Sci.-Polym. E. 16(12) (2005) 1595CrossRefGoogle Scholar
  16. 16.
    W. E. ROORDA, J. A. BOUWSTRA, M. A. DE VRIES, H. E. JUNGINGER, Biomaterials 9 (1988) 494CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Hana Studenovská
    • 1
    Email author
  • Miroslav Šlouf
    • 1
  • František Rypáček
    • 1
  1. 1.Department of Bioanalogous and Special Polymers, Institute of Macromolecular ChemistryAcademy of Sciences of the Czech RepublicPrague 6Czech Republic

Personalised recommendations