Journal of Materials Science: Materials in Medicine

, Volume 19, Issue 2, pp 683–693

Performance of CF/PA12 composite femoral stems

  • Melissa Campbell
  • Martin N. Bureau
  • L’Hocine Yahia
Article

Abstract

This study presents the microstructural and mechanical behavior of the CF/PA12 composite material developed as well as its biomechanical performance when used for the fabrication of femoral stems. The static tests were performed to evaluate the compressive and flexural modulus as well as the ultimate compressive and bending strength. It was found that CF/PA12 composite had bone-matching properties in the same order of magnitude as cortical bone in the femur. Density and void content measurements were also done to assess the consolidation quality. Dynamic fatigue testing was conducted on both CF/PA12 cylinders and femoral stems to evaluate the long term durability and mechanical reliability of the composite. Compression–compression cyclic loading was used at a frequency of 6 Hz with loads varying between 17 kN and 22 kN for the composite cylinders while a frequency of 10 Hz and load of 2300 N was employed for the femoral stems. Results indicate that the fatigue performance of CF/PA12 composite surpasses by far the required fatigue performance for total hip prosthesis (THP) stems. The overall performance of the CF/PA12 femoral stems confirms that this composite is an excellent candidate material for orthopedic applications such as THP stems.

References

  1. 1.
    S. KURTZ, E. LAU, K. ZHAO, F. MOWAT, K. ONG, and M. HALPERN, in 73rd Annual Meeting of the American Academy of Orthopaedic Surgeons (Chicago, IL, 2006)Google Scholar
  2. 2.
    D. TAYLOR, C. MARTIN, B. CORNELIS and M. E. B. JONES, J. Eng. Med. 207(2) (1993) 121CrossRefGoogle Scholar
  3. 3.
    H. BOUGHERARA, M. N. BUREAU, M. CAMPBELL, A. VADEAN and L’H. YAHIA, J. Biomed. Mater. Res. A. 82A(1) (2007) 27CrossRefGoogle Scholar
  4. 4.
    A. REINHARDT, S. G. ADVANI, M. H. SANTARE and F. MILLER, J. Compos. Mater. 33(9) (1999) 853Google Scholar
  5. 5.
    J. A. SIMOES and A. T. MARQUES, Comp. Sci. Tech. 60 (2000) 559CrossRefGoogle Scholar
  6. 6.
    J. A. SIMOES and A. T. MARQUES, Compos. Part A 32 (2001) 655CrossRefGoogle Scholar
  7. 7.
    J. A. SIMOES and A. T. MARQUES, Mater. Des. 26 (2005) 391Google Scholar
  8. 8.
    F. K. CHANG, J. L. PEREZ and J. A. DAVIDSON, J. Biomed. Mater. Res. 24(7) (1990) 873CrossRefGoogle Scholar
  9. 9.
    R. DE SANTIS, L. AMBROSIO and L. NICOLAIS, J. Inorg. Biochem. 79(1–4) (2000) 97Google Scholar
  10. 10.
    F. ADAM, D. S. HAMMER, S. PFAUTSCH and K. WESTERMANN, J. Arthroplasty 17(2) (2002) 217CrossRefGoogle Scholar
  11. 11.
    M. AKAY and N. ASLAN, J. Biomed. Mater. Res. 31 (1996) 167CrossRefGoogle Scholar
  12. 12.
    J. R. BRITTON, C. G. C. LYONS and P. J. PRENDERGAST, Strain 40 (2004) 193CrossRefGoogle Scholar
  13. 13.
    J.-G. LEGOUX, F. CHELLAT, R. LIMA, B. MARPLE, M. N. BUREAU, H. SHEN and G. A. CANDELIERE, J. Thermal Spray Technol. 15(4) (2006) 629CrossRefGoogle Scholar
  14. 14.
    K. CHOI and S. A. GOLDSTEIN, J. Biomech. 25(12) (1992) 1371CrossRefGoogle Scholar
  15. 15.
    American Society for Testing and Materials, “ASTM D348-00”, Standard Test Methods for Rigid Tubes Used for Electrical InsulationGoogle Scholar
  16. 16.
    American Society for Testing and Materials, “ASTM D790-03”, Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials p. 6Google Scholar
  17. 17.
    American Society for Testing and Materials, “ASTM E2207–02”, Standard Practice for Strain-Controlled Axial-Torsional Fatigue Testing with Thin-walled Tubular SpecimensGoogle Scholar
  18. 18.
    O. H. BASQUIN, in “Proceedings of the American Society for Testing and Materials”, Vol 10 (1910)Google Scholar
  19. 19.
    International Standard Organization, “ISO7206–4”, Implants for Surgery-Partial and Total Hip Joint Prostheses-Part 4: Determination of Endurance Properties of Stemmed Femoral ComponentsGoogle Scholar
  20. 20.
    American Society for Testing and Materials, “ASTM F1612–95”, Standard Practice For Cyclic Fatigue Testing of Metallic Stemmed Hip Arthroplasty Femoral Components with TorsionGoogle Scholar
  21. 21.
    M. N. BUREAU and J. DENAULT, Comp. Sci. Tech. 64 (2004) 1785CrossRefGoogle Scholar
  22. 22.
    D. C. WIRTZ, N. SCHIFFERS, T. PANDORF, K. RADERMACHER, D. WEICHERT and R. FORST, J. Biomech. 33 (2000) 1325CrossRefGoogle Scholar
  23. 23.
    D. T. REILLY and A. H. BURSTEIN, J. Biomech. 8(6) (1975) 393CrossRefGoogle Scholar
  24. 24.
    D. T. REILLY, A. H. BURSTEIN and V. H. FRANKEL, J. Biomech. 7(3) (1974) 271CrossRefGoogle Scholar
  25. 25.
    S. M. SNYDER and E. SCHNEIDER, J. Orthop. Res. 9 (1991) 422CrossRefGoogle Scholar
  26. 26.
    H. B. SKINNER, Orthopedics 14(3) (1991) 323Google Scholar
  27. 27.
    G. BERGMANN, F. GRAICHEN and A. ROHLMANN, J. Biomech. 26(8) (1993) 969CrossRefGoogle Scholar
  28. 28.
    American Society for Testing and Materials, “ASTM F1440–92”, Standard Practice for Cyclic Fatigue Testing of Metallic Stemmed Hip Arthroplasty Femoral Components Without TorsionGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Melissa Campbell
    • 1
  • Martin N. Bureau
    • 2
  • L’Hocine Yahia
    • 1
  1. 1.École Polytechnique de MontréalMontrealCanada
  2. 2.Industrial Materials InstituteNational Research Council CanadaMontrealCanada

Personalised recommendations