Advertisement

Antibacterial activity of chitosan-based matrices on oral pathogens

  • Aparna R. Sarasam
  • Phoebe Brown
  • Sharukh S. Khajotia
  • John J. Dmytryk
  • Sundararajan V. Madihally
Article

Abstract

Chitosan is a well sought-after polysaccharide in biomedical applications due to its biocompatibility, biodegradability to non-toxic substances, and ease of fabrication into various configurations. However, alterations in the anti-bacterial properties of chitosan in various forms is not completely understood. The objective of this study was to evaluate the anti-bacterial properties of chitosan matrices in different configurations against two pathogens—Gram-positive Streptococcus mutans and Gram-negative Actinobacillus actinomycetemcomitans. Two-dimensional (2-D) membranes and three-dimensional (3-D) porous scaffolds were synthesized by air drying and controlled-rate freeze drying. Matrices were suspended in bacterial broths with or without lysozyme (enzyme that degrades chitosan). Influences of pore size, blending with Polycaprolactone (PCL, a synthetic polymer), and neutralization process on bacterial proliferation were studied. Transient changes in optical density of the broth, adhesion characteristics, viability, and contact-dependent bacterial activity were assessed. 3-D porous scaffolds were more effective in reducing the proliferation of S. mutans in suspension than 2-D membranes. However, no significant differences were observed on the proliferation of A. actinomycetemcomitans. Presence of lysozyme significantly increased the antibacterial activity of chitosan against A. actinomycetemcomitans. Pore size did not affect the proliferation kinetics of either species, with or without lysozyme. NaOH neutralization of chitosan increased bacterial adhesion whereas ethanol neutralization inhibited adhesion without lowering proliferation. Mat culture tests indicated that chitosan does not allow proliferation on its surface and it loses antibacterial activity upon blending with PCL. Results suggest that the chemical and structural characteristics of chitosan-based matrices can be manipulated to influence the interaction of different bacterial species.

Keywords

Chitosan Antibacterial Activity Lysozyme Bacterial Adhesion Enamel Matrix Derivative 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Financial support was provided by the Oklahoma Center for Advancement of Science and Technology (HR05–075), OUHSC-ORALS, INBRE Summer Research Program for Undergraduates, and the National Institutes of Health (NIH/NCRR P20RR018741). Initial guidance in bacterial cell culture work by Hector Cumba and Asma Ahmed at Oklahoma State University is deeply appreciated.

References

  1. 1.
    R. LANGER and D. A. TIRRELL, Nature 428 (2004) 487CrossRefGoogle Scholar
  2. 2.
    M. A. REYNOLDS, M. E. AICHELMANN-REIDY, G. L. BRANCH-MAYS and J. C. GUNSOLLEY, Ann. Periodontol. 8 (2003) 227CrossRefGoogle Scholar
  3. 3.
    L. E. FREED, G. VUNJAK-NOVAKOVIC, R. J. BIRON, D. B. EAGLES, D. C. LESNOY, S. K. BARLOW, et al., Biotechnology (N Y) 12 (1994) 689CrossRefGoogle Scholar
  4. 4.
    M. NAKASHIMA and A. H. REDDI, Nat. Biotechnol. 21 (2003) 1025CrossRefGoogle Scholar
  5. 5.
    A. J. PUTNAM and D. J. MOONEY, Nat. Med. 2 (1996) 824CrossRefGoogle Scholar
  6. 6.
    G. R. YOUNG, Dent. Today 22 (2003) 73 quiz 77Google Scholar
  7. 7.
    S. J. LIN, L. T. HOU, C. M. LIU, C. S. LIAO, M. Y. WONG, J. Y. HO, et al., J. Dent. 28 (2000) 199CrossRefGoogle Scholar
  8. 8.
    G. M. BOWERS, R. G. SCHALLHORN, P. K. MCCLAIN, G. M. MORRISON, R. MORGAN and M. A. REYNOLDS, J. Periodontol. 74 (2003) 1255CrossRefGoogle Scholar
  9. 9.
    P. EICKHOLZ, T. S. KIM, R. HOLLE and E. HAUSMANN, J. Periodontol. 72 (2001) 35CrossRefGoogle Scholar
  10. 10.
    C. H. HAMMERLE and R. E. JUNG, Periodontology 33 (2000) 36CrossRefGoogle Scholar
  11. 11.
    R. MUZZARELLI, G. BIAGINI, A. PUGNALONI, O. FILIPPINI, V. BALDASSARRE, C. CASTALDINI, et al., Biomaterials 10 (1989) 598CrossRefGoogle Scholar
  12. 12.
    J. S. PARK, S. H. CHOI, I. S. MOON, K. S. CHO, J. K. CHAI and C. K. KIM, J. Clin. Periodontol. 30 (2003) 443CrossRefGoogle Scholar
  13. 13.
    Y. J. YEO, D. W. JEON, C. S. KIM, S. H. CHOI, K. S. CHO, Y. K. LEE, et al., J. Biomed. Mater. Res. B Appl. Biomater. 72 (2005) 86CrossRefGoogle Scholar
  14. 14.
    K. TOMIHATA and Y. IKADA, Biomaterials 18 (1997) 567CrossRefGoogle Scholar
  15. 15.
    F. L. MI, Y. C. TAN, H. F. LIANG and H. W. SUNG, Biomaterials 23 (2002) 181CrossRefGoogle Scholar
  16. 16.
    G. IKINCI, S. SENEL, H. AKINCIBAY, S. KAS, S. ERCIS, C. G. WILSON, et al., Int. J. Pharm. 235 (2002) 121CrossRefGoogle Scholar
  17. 17.
    Y. C. CHUNG, H. L. WANG, Y. M. CHEN and S. L. LI, Bioresour. Technol. 88 (2003) 179CrossRefGoogle Scholar
  18. 18.
    B. K. CHOI, K. Y. KIM, Y. J. YOO, S. J. OH, J. H. CHOI and C. Y. KIM, Int. J. Antimicrob. Agents 18 (2001) 553CrossRefGoogle Scholar
  19. 19.
    R. TARSI, R. A. MUZZARELLI, C. A. GUZMAN and C. PRUZZO, J. Dent. Res. 76 (1997) 665Google Scholar
  20. 20.
    E. I. RABEA, M. E. BADAWY, C. V. STEVENS, G. SMAGGHE and W. STEURBAUT, Biomacromolecules 4 (2003) 1457CrossRefGoogle Scholar
  21. 21.
    I. M. HELANDER, E. L. NURMIAHO-LASSILA, R. AHVENAINEN, J. RHOADES and S. ROLLER, Int. J. Food Microbiol. 71 (2001) 235CrossRefGoogle Scholar
  22. 22.
    L. QI, Z. XU, X. JIANG, C. HU and X. ZOU, Carbohydr. Res. 339 (2004) 2693Google Scholar
  23. 23.
    H. K. NO, S. H. LEE, N. Y. PARK and S. P. MEYERS, J. Agric. Food. Chem. 51 (2003) 7659CrossRefGoogle Scholar
  24. 24.
    Y. M. CHEN, Y. C. CHUNG, L. W. WANG, K. T. CHEN and S. Y. LI, J. Environ. Sci. Health. Part A Tox. Hazard. Subst. Environ. Eng. 37 (2002) 1379Google Scholar
  25. 25.
    R. J. NORDTVEIT, K. M. VARUM, O. SMIDSROD, Carbohydr. Polym. 29 (1996) 163CrossRefGoogle Scholar
  26. 26.
    A. MOSHFEGHIAN, J. TILLMAN and S. V. MADIHALLY, J. Biomed. Mater. Res. A 79 (2006) 418Google Scholar
  27. 27.
    A. SARASAM and S. V. MADIHALLY, Biomaterials 26 (2005) 5500CrossRefGoogle Scholar
  28. 28.
    Y. HUANG, S. ONYERI, M. SIEWE, A. MOSHFEGHIAN and S. V. MADIHALLY, Biomaterials 26 (2005) 7616CrossRefGoogle Scholar
  29. 29.
    C. G. L. KHOO, S. FRANTZICH, A. ROSINSKI, M. SJOSTROM and J. HOOGSTRAATE, Eur. J. Pharm. Biopharm. 55 (2003) 47CrossRefGoogle Scholar
  30. 30.
    S. V. MADIHALLY and H. W. MATTHEW, Biomaterials 20 (1999) 1133CrossRefGoogle Scholar
  31. 31.
    J. A. BANAS, Front. Biosci. 9 (2004) 1267CrossRefGoogle Scholar
  32. 32.
    E. S. CHAVES, M. K. JEFFCOAT, C. C. RYERSON and B. SNYDER, J. Clin. Periodontol. 27 (2000) 897CrossRefGoogle Scholar
  33. 33.
    Y. HUANG, M. SIEWE and S. V. MADIHALLY, Biotechnol. Bioeng. 93 (2006) 64CrossRefGoogle Scholar
  34. 34.
    J. D. RUDNEY, K. L. HICKEY and Z. JI, J. Dent. Res. 78 (1999) 759CrossRefGoogle Scholar
  35. 35.
    V. ROGER, J. TENOVUO, M. LENANDER-LUMIKARI, E. SODERLING and P. VILJA, Caries Res. 28 (1994) 421CrossRefGoogle Scholar
  36. 36.
    D. S. JONES, J. D. JOKIC and S. P. GORMAN, Biomaterials 26 (2005) 2013CrossRefGoogle Scholar
  37. 37.
    A. R. SARASAM, R. K. KRISHNASWAMY and S. V. MADIHALLY, Biomacromolecules 7 (2006) 1131CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Aparna R. Sarasam
    • 1
  • Phoebe Brown
    • 1
  • Sharukh S. Khajotia
    • 2
  • John J. Dmytryk
    • 2
  • Sundararajan V. Madihally
    • 1
  1. 1.School of Chemical EngineeringOklahoma State UniversityStillwaterUSA
  2. 2.The University of Oklahoma Health Sciences CenterOklahoma CityUSA

Personalised recommendations