The influence of pore size on colonization of poly(l-lactide-glycolide) scaffolds with human osteoblast-like MG 63 cells in vitro

  • Elzbieta Pamula
  • Lucie Bacakova
  • Elena Filova
  • Joanna Buczynska
  • Piotr Dobrzynski
  • Lenka Noskova
  • Lubica Grausova


A degradable copolymer of l-lactide and glycolide (PLG) was synthesized by ring opening polymerization using zirconium acetylacetonate [Zr(acac)4] as a biocompatible initiator. The structure of the copolymer was studied by nuclear magnetic resonance spectroscopy (NMR) and gel permeation chromatography (GPC). Porous scaffolds of defined microstructure were prepared by solvent casting/salt particulate leaching, which resulted in the creation of three types of scaffolds with the same porosity (87% ± 1%) but with different diameters of the pores (600, 200 and 40 μm) and degree of interconnectivity. The potential of the scaffolds for cell colonization was tested in a conventional static cell culture system using human osteoblast-like MG 63 cells. As revealed by conventional fluorescence and confocal microscopy on days 5 and 7 after seeding, the cells on the scaffolds of large or medium pore size infiltrated the inside part of the material, whereas on the scaffolds of small pore size, the cells were retained on the material surface. On day 7 after seeding, the highest number of cells was found on the scaffolds of the largest pore size (more than 120,000 cells per sample of the diameter 15 mm and thickness 2 mm), whereas on the scaffolds with medium and smallest pore diameter, the number of cells was almost three times lower and similar for both pore sizes. These results corresponded well with the incorporation of bromodeoxyuridine into newly synthesized DNA, which was significantly higher in cells on scaffolds of the largest pore size than on the material with medium and smallest pore diameter. As indicated by the MTT test, the mitochondrial activity in cells on scaffolds with medium pore size was similar to that on the material with the highest pore size, and significantly higher than on scaffolds of the smallest pore diameter. These results suggest that PLG scaffolds with the largest pore diameter (600 μm) and better pore interconnectivity are the most suitable for colonization with osteogenic cells.



This study was supported by the Polish Budget Fund for Scientific Research (project No. 3 T08D 019 28), by the Ministry of Education, Youth and Sports of the Czech Republic (COST project, Action 527.130, grant No. 1P05OC012), and by the Grant Agency of the Czech Republic (grant No. 106/06/1576). We also thank Ms. Katarina Mitrova (Inst. Physiol., Acad. Sci CR) for her excellent technical assistance with confocal microscopy and Mr. Robin Healey (Czech Technical University, Prague) for language revision of the manuscript.


  1. 1.
    B. L. SEAL, T. C. OTERO and A. PANITCH, Mater. Sci. Eng. R 34 (2001) 147CrossRefGoogle Scholar
  2. 2.
    S. YANG, K.-F. LEONG, Z. DU and C.-K. CHUA, Tissue Eng. 7 (2001) 679CrossRefGoogle Scholar
  3. 3.
    Y. TABATA, Drug Discovery Today 6 (2001) 483CrossRefGoogle Scholar
  4. 4.
    F. R. ROSE, L. A. CYSTER, D. M. GRANT, C. A. SCOTCHFORD, S. M. HOWDLE and K. M. SHAKESHEFF, Biomaterials 25 (2004) 5507CrossRefGoogle Scholar
  5. 5.
    F. J. O’BRIEN, B. A. HARLEY, I. V. YANNAS and L. J. GIBSON, Biomaterials 26 (2005) 433CrossRefGoogle Scholar
  6. 6.
    P. DOBRZYNSKI, J. KASPERCZYK, H. JANECZEK and M. BERO, Macromolecules 34 (2001) 5090CrossRefGoogle Scholar
  7. 7.
    B. CZAJKOWSKA, P. DOBRZYŃSKI and M. BERO, J. Biomed. Mater. Res. 74A (2005) 591CrossRefGoogle Scholar
  8. 8.
    E. PAMULA, M. BLAZEWICZ, B. CZAJKOWSKA, P. DOBRZYNSKI, M. BERO and J. KASPERCZYK, Ann. Transplant. 9(1A) (2004) 64Google Scholar
  9. 9.
    S. I. JEONG, S. H. KIM, Y. H. KIM, Y. JUNG, J. H. KWON, B. S. KIM and Y. M. LEE, J. Biomater. Sci. Polym. Ed. 15 (2004) 645CrossRefGoogle Scholar
  10. 10.
    S. L. ISHAUG-RILEY, G. M. CRANE, A. GURLEK, M. J. MILLER, A. W. YASKO, M. J. YASZEMSKI and A. G. MIKOS, J. Biomed. Mater. Res. 36 (1997) 17CrossRefGoogle Scholar
  11. 11.
    S. L. ISHAUG-RILEY, G. M. CRANE-KRUGER, M. J. YASZEMSKI and A. G. MIKOS, Biomaterials 19 (1998) 1405CrossRefGoogle Scholar
  12. 12.
    M. YAMAMOTO, Y. TABATA, H. KAWASAKI and Y. IKADA, J. Mater. Sci. Mater. Med. 11 (2000) 213CrossRefGoogle Scholar
  13. 13.
    G. AKAY, M. A. BIRCH and M. A. BOKHARI, Biomaterials 25 (2004) 3991CrossRefGoogle Scholar
  14. 14.
    G. TORUN KOSE, S. BER, F. KORKUSUZ and V. HASIRCI, J. Mater. Sci. Mater. Med. 14 (2003) 121CrossRefGoogle Scholar
  15. 15.
    P. W. HUI, P. C. LEUMG and A. SHER, J. Biomechanics 29 (1996) 123CrossRefGoogle Scholar
  16. 16.
    J. SOHIER, R. E. HAAN, K. DE GROOT and J. M. BEZEMER, J. Contr. Release 87 (2003) 57CrossRefGoogle Scholar
  17. 17.
    M. A. KNACKSTEDT, C. H. ARNS, T. J. SENDEN and K. GROSS, Biomaterials 27 (2006) 2776CrossRefGoogle Scholar
  18. 18.
    S. H. OH, S. G. KANG, E. S. KIM, S. H. CHO and J. H. LEE, Biomaterials 24 (2003) 4011CrossRefGoogle Scholar
  19. 19.
    A. G. MIKOS, M. D. LYMAN, L. E. FREED and R. LANGER, Biomaterials 15 (1994) 55CrossRefGoogle Scholar
  20. 20.
    L. BACAKOVA, K. WALACHOVA, V. SVORCIK and V. HNATOWICZ, J. Biomater. Sci.–Polym. Ed. 12 (2001) 817CrossRefGoogle Scholar
  21. 21.
    K. H. FROSCH, F. BARVENCIK, V. VIERECK, C. H. LOHMANN, K. DRESING, J. BREME, E. BRUNNER and K. M. STURMER, J. Biomed. Mater. Res. 68A (2004) 325CrossRefGoogle Scholar
  22. 22.
    J. ZELTINGER, J. K. SHERWOOD, D. A. GRAHAM, R. MUELLER and L. G. GRIFFITH, Tissue Eng. 7 (2001) 557CrossRefGoogle Scholar
  23. 23.
    T. BHARDWAJ, R. M. PILLIAR, M. D. GRYNPAS and R. A. KANDEL, J. Biomed. Mater. Res. 57 (2001) 190CrossRefGoogle Scholar
  24. 24.
    J. X. LU, B. FLAUTRE, K. ANSELME, P. HARDOUIN, A. GALLUR, M. DESCAMPS and B. THIERRY, J. Mater. Sci. Mater. Med. 10 (1999) 111CrossRefGoogle Scholar
  25. 25.
    W. T. GODBEY, S. B. HINDY, M. E. SHERMAN and A. ATALA, Biomaterials 25 (2004) 2799CrossRefGoogle Scholar
  26. 26.
    K. WHANG, K. E. HEALY, D. R. ELENZ, E. K. NAM, D. C. TSAI, C. H. THOMAS, G. W. NUBER, F. H. GLORIEUX, R. TRAVERS and S. M. SPREGUE, Tissue Eng. 5 (1999) 35CrossRefGoogle Scholar
  27. 27.
    C. SCHILLER and M. APPLE, Biomaterials 24 (2003) 2037CrossRefGoogle Scholar
  28. 28.
    L. GUAN and J. E. DAVIES, J. Biomed. Mater. Res. 71A (2004) 480CrossRefGoogle Scholar
  29. 29.
    T. J. WEBSTER, C. ERGUN, R. H. DOREMUS, R. W. SIEGEL and R. BIZIOS, J. Biomed. Mater. Res. 51 (2000) 475CrossRefGoogle Scholar
  30. 30.
    R. L. PRICE, M. C. WAID, K. M. HABERSTROH and T. J. WEBSTER, Biomaterials 24 (2003) 1877CrossRefGoogle Scholar
  31. 31.
    K. M. WOO, V. J. CHEN and P. X. MA, J. Biomed. Mater. Res. 67A (2003) 531CrossRefGoogle Scholar
  32. 32.
    G. WIE and P. X. MA, Biomaterials 25 (2004) 4749CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Elzbieta Pamula
    • 1
  • Lucie Bacakova
    • 2
  • Elena Filova
    • 2
  • Joanna Buczynska
    • 1
  • Piotr Dobrzynski
    • 3
  • Lenka Noskova
    • 2
  • Lubica Grausova
    • 2
  1. 1.Department of Biomaterials, Faculty of Materials Science and CeramicsAGH University of Science and TechnologyKrakowPoland
  2. 2.Department of Growth and Differentiation of Cell PopulationsInstitute of Physiology, Academy of Sciences of the Czech RepublicPrague 4-KrcCzech Republic
  3. 3.Centre of Polymer ChemistryPolish Academy of SciencesZabrzePoland

Personalised recommendations