Performance of laser bonded glass/polyimide microjoints in cerebrospinal fluid

  • A. MianEmail author
  • G. Newaz
  • D. G. Georgiev
  • N. Rahman
  • L. Vendra
  • G. Auner
  • R. Witte
  • H. Herfurth


In this paper, laser bonded microjoints between glass and polyimide is considered to examine their potential applicability in encapsulating neural implants. To facilitate bonding between polyimide and glass, a thin titanium film with a thickness of 2 μm was deposited on borosilicate glass plates by a physical vapor deposition (PVD) process. Titanium coated glass was then joined with polyimide by using a cw fiber laser emitting at a wavelength of 1.1 μm (1.0 W) to prepare several tensile samples. Some of the samples were exposed to artificial cerebrospinal fluid (aCSF) at 37^∘C for two weeks to assess long-term integrity of the joints. Both the as-received and aCSF soaked samples were subjected to uniaxial tensile loads for bond strengths measurements. The bond strengths for the as-received and aCSF soaked samples were measured to be 7.31 and 5.33 N/mm, respectively. Although the long-term exposure of the microjoints to aCSF has resulted in 26% reduction of bond strength, the samples still retain considerably high strength as compared with the titanium-polyimide samples. The failed glass/polyimide samples were also analyzed using optical microscopy, and failure mechanisms are discussed. In addition, a two dimensional finite element analysis (FEA) was conducted to understand the stress distribution within the substrate materials while the samples are in tension. The FEA results match reasonably well with the experimental load-displacement curves for as-received samples. Detailed discussion on various stress contours is presented in the paper, and the failure mechanisms observed from the experiment are shown in good agreement with the FEA predicted ones.


Finite Element Analysis Bond Strength Polyimide Failure Load Physical Vapor Deposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. JEFFREY, The Implantable Defibrillator and American Health Care (2001) 408.Google Scholar
  2. 2.
    S. MIYOSHI, T. IFUKUBE and J. MATSUSHIMA, Transactions of the Institute of Electrical Engineers of Japan Part A, 118-A, no.3 (1998) 260.Google Scholar
  3. 3.
    U. MEYER-BAESE, A. MEYER-BAESE and H. SCHEICH, in Proceedings of SPIE - The International Society for Optical Engineering, 3077 (1997) 582.Google Scholar
  4. 4.
    S. ROMAN, G. CANEVET, C. LORENZI, J. TRIGLIA and C. LIEGEOIS-CHAUVEL, Neouroreport, 15 (4) (2004) 601.CrossRefGoogle Scholar
  5. 5.
    J. YAO and Y. ZHANG, IEEE Transactions on Biomedical Engineering, 49 (2002) 1299.CrossRefGoogle Scholar
  6. 6.
    L. T. COHEN, L. M. RICHARDSON, E. SAUNDERS and R. S. COWAN, Hearing Research, 179 (2003) 72.CrossRefGoogle Scholar
  7. 7.
    J. T. SANTINI, in Proceedings of the 4th Int. Symposium on BIOMEMS, Cambridge MA, (2002).Google Scholar
  8. 8.
    R. S. SHAWGO, A. C. R. GRAYSON, Y. LI and M. J. CIMA, Current Opinion in Solid State and Materials Science, 6, Issue 4 (2002) 329.CrossRefGoogle Scholar
  9. 9.
    M. L. HANS and A. M. LOWMAN, Current Opinion in Solid State and Materials Science, 6, Issue 4 (2002) 319.CrossRefGoogle Scholar
  10. 10.
    D. LA VAN, T. MCGUIRE and R. LANGER, Nature Biotechnology, 21 (1) (2003) 1184.CrossRefGoogle Scholar
  11. 11.
    S. C. NICOLAIDIS and H. B. WILLIAMS, Microsurgery, 21 (2001) 241.CrossRefGoogle Scholar
  12. 12.
    R. G. DENNIS, Medical & Biological Engineering & Computing, 36 (1998) 225.CrossRefGoogle Scholar
  13. 13.
    R. G. DENNIS, D. E. DOW and J. A. FAULKNE, Medical Engineering & Physics, 25, Issue 3 (2003) 239.CrossRefGoogle Scholar
  14. 14.
    N. S. PEACHEY and A. Y. CHOW, Journal of Rehabilitation Research and Development, 36, No. 4 (1999) 381.Google Scholar
  15. 15.
    A. Y. CHOW and V. Y. CHOW, Neuroscience Letters, 225, Issue 1 (1997) 13.CrossRefGoogle Scholar
  16. 16.
    M. S. HUMAYUN, J. D. WEILAND, G. Y. FUJII, R. GREENBERG, R. WILLIAMSON, J. LITTLE, B. MECH, V. CIMMARUSTI, G. V. BOEMEL, G. DAGNELIE and E. D. JUAN, Jr., Vision Research, 43 (2003) 2573.CrossRefGoogle Scholar
  17. 17.
    B. SCHLOSSHAUER, T. BRINKER, H. MULLER and J. MEYER, Brain Research, 903 (2001) 237.CrossRefGoogle Scholar
  18. 18.
    P. R. KENNEDY and R. A. E. BAKAY, NeuroReport, 9 (1998) 1707.CrossRefGoogle Scholar
  19. 19.
    K. LEE, J. HE, S. MASSIA, G. EHTESHAMI and G. RAUPP, Journal of Micromechanics and Microengineering, 14 (2004) 32.CrossRefGoogle Scholar
  20. 20.
    R. J. VETTER, J. C. WILLIAMS, J. F. HETKE, E. A. NAUNAMAKER and D.R. KIPKE, IEEE Transactions on Biomedical Engineering, 51 (2004) 896.CrossRefGoogle Scholar
  21. 21.
    J. W. MCDONALD, Scientific American, 281 (1999) 64.CrossRefGoogle Scholar
  22. 22.
    J. MEYER, T. STIEGLITZ, O. SCHOLZ, W. HABERER and H. BEUTEL, IEEE Transactions on Advanced Packaging, 24 (2001) 366.CrossRefGoogle Scholar
  23. 23.
    I. BAUER, U. A. RUSSEK, H. HERFURTH, R. WITTE, S. HEINEMANN, G. NEWAZ, A. MIAN, D. GEORGIEV and G. AUNER, in Proceedings of SPIE—Photonics West LASE 2004: Lasers and Applications in Science and Engineering conference, 24–29 January 2004, San Jose, California.Google Scholar
  24. 24.
    A. MIAN, G. NEWAZ, L. VENDRA, N. RAHMAN, D.G. GEORGIEV, G. AUNER, R. WITTE and H. HERFURTH, Journal of Materials Science: Materials in Medicine, 16 (2005) 229.CrossRefGoogle Scholar
  25. 25.
    M. J. WILD, A. GILLNER and R. POPRAWE, Sensors and Actuators A, 93 (2001) 63.CrossRefGoogle Scholar
  26. 26.
    V. A. KAGAN, R. G. BRAY and W. P. KUHN, Journal of Reinforced Plastics and Composites, 21, no. 12 (2002) 1101.CrossRefGoogle Scholar
  27. 27.
    V. A. KAGAN and G. P. PINHO, Journal of Reinforced Plastics and Composites, 23, no. 1 (2004) 95.CrossRefGoogle Scholar
  28. 28.
    P. A. HILTON, I. A. JONES and Y. KENNISH, in Proceedings of SPIE—The International Society for Optical Engineering, 4831 (2002) 44.Google Scholar
  29. 29.
    M. LU, Z. QIAN, W. REN, S. LIU and D. SHANGGUAN, International Journal of Solids and Structures, 36, issue 1 (1999) 65.CrossRefGoogle Scholar
  30. 30.
    ABAQUS User’s Manual, Version 6.2, Hibbit, Karlsson and Sorensen, USA.Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2007

Authors and Affiliations

  • A. Mian
    • 1
    Email author
  • G. Newaz
    • 3
  • D. G. Georgiev
    • 4
  • N. Rahman
    • 2
  • L. Vendra
    • 2
  • G. Auner
    • 4
  • R. Witte
    • 5
  • H. Herfurth
    • 5
  1. 1.Department of Mechanical and Industrial Eng.Montana State UniversityBozeman
  2. 2.Department of Mechanical EngineeringWayne State University DetroitDetroitUSA
  3. 3.Department of Mechanical Engineering, Center for Smart Sensors and Integrated Microsystems (SSIM); Institute for Manufacturing ResearchWayne State University DetroitDetroitUSA
  4. 4.Center for Smart Sensors and Integrated Microsystems (SSIM)Wayne State University DetroitDetroitUSA
  5. 5.Center for Laser Technology, Fraunhofer USAPlymouthUSA

Personalised recommendations