Studies of P(L/D)LA 96/4 non-woven scaffolds and fibres; properties, wettability and cell spreading before and after intrusive treatment methods

  • Ville ElläEmail author
  • Manuela E. Gomes
  • Rui L. Reis
  • Pertti Törmälä
  • Minna Kellomäki


Poly(L/D)lactide 96/4 fibres with diameters of 50 and 80 μm were produced. The smaller diameter fibres were carded and needle punched to form a non-woven mat. Fibres and non-woven mats were hydrolysed for a period of 20 weeks. Fibres and pressed non-woven discs were treated with low-temperature oxygen plasma and alkaline KOH hydrolysis and ethanol washing was used as a reference treatment. The non-wovens lost 50% of their tear strength after 8 weeks in vitro while the fibres still retained 65% tensile strength after 20 weeks. Hydrolysation time in KOH, treatment time and power settings of the oxygen plasma were all directly proportional to the mechanical properties of the fibres. Increasing time (and power) resulted in lower tensile properties. Rapid wetting of the scaffolds was achieved by oxygen plasma, KOH hydrolysation and ethanol washing. Cell culturing using fibroblast cell line was carried out for the treated and non-treated non-woven scaffolds. In terms of adhesion and the spreading of the cells into the scaffold, best results after 3-day culturing were obtained for the oxygen plasma treated scaffolds.


Lactide PLLA Plasma Treatment Oxygen Plasma Plasma Treated Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Research funds from the European Union Project “Spare Parts” (QLRT-2000-00487) and National Technology Agency (TeKes) for the Center of Excellence of Biomaterials are greatly appreciated. This work was also partially supported by the European Union funded STREP Project HIPPOCRATES (NMP3-CT-2003-505758) and was carried out under the scope of the European NoE EXPERTISSUES (NMP3-CT-2004-500283). The authors would like to thank Eira Lehtinen, Milla Törmälä and Iva Pashkuleva for their help during this work.


  1. 1.
    M. KELLOMÄKI, T. KULMALA, V. ELLÄ, S. LÄNSMAN, N. ASHAMMAKHI, T. WARIS, P. TÖRMÄLÄ, Abstract presented at the Symposium on Tissue engineering Science, Myconos, Greece, May 19–23, 2002. Abstract no. 25, p 49Google Scholar
  2. 2.
    P. B. HONKANEN, M. KELLOMÄKI, M. Y. LEHTIMÄKI, P. TÖRMÄLÄ, S. MÄKELÄ and M. U. K. LEHTO, Tissue Eng. 9(12) (2003) 957CrossRefGoogle Scholar
  3. 3.
    L. E. FREED, G. VUNJAK-NOVAKOVIC, R. J. BIRON, D. B. EAGLES, D. C. LESNOY, S. K. BARLOW and R. LANGER, Biotechnology 12(7) (1994) 689CrossRefGoogle Scholar
  4. 4.
    M. SITTINGER, D. REITZEL, M. DAUNER, H. HIERLEMANN, C. HAMMER, E. KASTENBAUER, H. PLACK, G. R. BURMESTER and J. BUJIA, J. Biomed. Mater. Res. Part B: Appl. Biomater. 33 (1996) 57CrossRefGoogle Scholar
  5. 5.
    A. G. MIKOS, Y. BAO, L. G. CIMA, D. E. INGBER, J. P. VACANTI and R. LANGER, J. Biomed. Mater. Res. 27 (1993) 83CrossRefGoogle Scholar
  6. 6.
    W. D. HUTMACHER, K. W. NG, C. KAPS, M. SITTINGER and S. KLÄRING, Biomaterials 24 (2003) 4445CrossRefGoogle Scholar
  7. 7.
    Y. WAN, J. YANG, J. BEI and S. WANG, Biomaterials 24 (2004) 3757CrossRefGoogle Scholar
  8. 8.
    H. CHIM, J. L. ONG, J.-T. SCHANTZ, D. W. HUTMACHER and M. AGRAWAL, J. Biomed. Mater. Res. 65A (2003) 327CrossRefGoogle Scholar
  9. 9.
    Y. WAN, X. QU, J. LU, C. ZHU, L. WAN, J. YANG, J. BEI and S. WANG, Biomaterials 25 (2004) 4777CrossRefGoogle Scholar
  10. 10.
    J. YANG, Y. WAN, C. TU, Q. CAI, J. BEI and S. WANG, Polym. Int. 52 (2003) 1892CrossRefGoogle Scholar
  11. 11.
    L. ROUXHET, F. DUHOUX, O. BORECKY, R. LEGRAS and Y.-J. SCHNEIDER, J. Biomater. Sci., Polym. Ed. 9(12) (1998) 1279Google Scholar
  12. 12.
    E. W. FISCHER, H. J. STERZEL and G. WEGNER, Kolloid-ZuZ Polymere. 251 (1973) 980CrossRefGoogle Scholar
  13. 13.
    J.-P. NUUTINEN, C. CLERC, T. VIRTA and P. TÖRMÄLÄ, J. Biomater. Sci. Polym. Ed. 13(12) (2002) 1325CrossRefGoogle Scholar
  14. 14.
    J. KANGAS, S. PAASIMAA, P. MÄKELÄ, J. LEPPILAHTI, P. TÖRMÄLÄ, T. WARIS and N. ASHAMMAKHI, J. Biomed. Mater. Res. Part B: Appl. Biomater. 58 (2001) 121CrossRefGoogle Scholar
  15. 15.
    P. MÄKELÄ, T. POHJONEN, P. TÖRMÄLÄ, T. WARIS and N. ASHAMMAKHI, Biomaterials. 23 (2002) 2587CrossRefGoogle Scholar
  16. 16.
    L. DÜRSELEN, M. DAUNER, H. HIERLEMANN, H. PLANCK, L. E. CLAES and A. IGNATIUS, J. Biomed. Mater. Res. Part B: Appl. Biomater. 58 (2001) 666CrossRefGoogle Scholar
  17. 17.
    M. KELLOMÄKI, T. POHJONEN and P.TÖRMÄLÄ, In “Biodegradable Polymers” (Citius Books, London, 2003), PBM series, vol. 2, p. 211Google Scholar
  18. 18.
    T. NAKAMURA, S. HITOMI, S. WATANABE, Y. SHIMIZU, K. JAMSHIDI, S. H. HYON and Y. IKADA, J. Biomed. Mater. Res. 23(10) (1989) 1115CrossRefGoogle Scholar
  19. 19.
    P. Mainil-Varlet, R. Curtis and S. Gogolewski, J. Biomed. Mater. Res. 36(3) (1997) 360CrossRefGoogle Scholar
  20. 20.
    S. GOGOLEWSKI, P. MAINIL-VARLET and J. G. DILLON, J. Biomed. Mater. Res. 32 (1996) 227CrossRefGoogle Scholar
  21. 21.
    S.-H. HSU and W.-C. CHEN, Biomaterials. 21 (2000) 359CrossRefGoogle Scholar
  22. 22.
    Z. GUGALA and S. GOGOLEWSKI, Biomaterials. 25 (2004) 2341CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Ville Ellä
    • 1
    Email author
  • Manuela E. Gomes
    • 2
    • 3
  • Rui L. Reis
    • 2
    • 3
  • Pertti Törmälä
    • 1
  • Minna Kellomäki
    • 1
  1. 1.Institute of BiomaterialsTampere University of TechnologyTampereFinland
  2. 2.3Bs Research Group – Biomaterials, Biodegradables and BiomimeticsUniversity of MinhoBragaPortugal
  3. 3.Department of Polymer EngineeringUniversity of MinhoGuimaraesPortugal

Personalised recommendations