Increase of the final setting time of brushite cements by using chondroitin 4-sulfate and silica gel

  • F. Tamimi-Mariño
  • J. Mastio
  • C. Rueda
  • L. Blanco
  • E. López-Cabarcos
Original Paper

Abstract

Chondroitin 4-sulfate (C4S) is a bioactive glycosaminoglycan with inductive properties in bone and tissue regeneration. Dicalcium phosphate dehydrate cements (known as brushite) are biocompatible and resorbable materials used in bone and dental surgery. In this study we analyzed the effect of C4S on the setting of a calcium phosphate cement and the properties of the resulting material. Brushite based cement powder was synthesised by mixing monocalcium phosphate with β-tricalcium phosphate and sodium pyrophosphate. When the concentration of C4S, in the liquid added to the cement powder, was between 1 and 8% the cement final setting time increases. Furthermore, the cement diametral tensile strength remains unaffected when solutions with concentrations of C4S below 5% were used, but decreases at higher C4S concentrations. Calorimetric analysis showed that the cements prepared with C4S alone and in combination with silica gel have a greater content of hydrated water. We concluded from our study that the addition of small amounts of C4S increases the cement setting time without affecting its diametral tensile strength and at the same time improves the cement’s hydrophilicity.

References

  1. 1.
    U. GBURECK, O. GROLMS, J. E. BARRALET, L. M. GROVER and R. THULL, Biomaterials 24(23) (2003) 4123CrossRefGoogle Scholar
  2. 2.
    Y. YIN, F. YE, S. CAI, K. YAO, J. CUI and X. SONG, J. Mater. Sci. Mater. Med. 14 (2003) 255CrossRefGoogle Scholar
  3. 3.
    M . BOHNER, U. GBURECK and J. E. BARRALET, Biomaterials 26(33) (2005) 6423CrossRefGoogle Scholar
  4. 4.
    M. BOHNER, S. MATTER. pat (WO0141824 (2002–11–06)Google Scholar
  5. 5.
    M. YOSHIKAWA, S. HAYAMI and T. TODA, Mater. Sci. Eng: C. 20(1–2) (2002) 135CrossRefGoogle Scholar
  6. 6.
    M. YOSHIKAWA and T. TODA, J. Eur. Ceram. Soc. 24(2) (2004) 521CrossRefGoogle Scholar
  7. 7.
    H.Z. HEROLD and A. TADMOR, Isr. J. Med.Sci. 5(3) (1969) 425Google Scholar
  8. 8.
    M. MOSS, G. O. KRUGER and D. C. REYNOLDS, Oral Surg. Oral Med. Oral Pathol. 20(6) (1965) 795CrossRefGoogle Scholar
  9. 9.
    R.A. SKINNER, P. D. TOTO and A. W. GARGIULO, J. Periodontol. 47(4) (1976) 196Google Scholar
  10. 10.
    B. AZAZ, D. GORDON and A. SHTEYER, Refuat Hapeh Vehashinayim 23 (1974) 75Google Scholar
  11. 11.
    X.H. ZOU, W. C. FOONG, T. CAO, B. H. BAY, H. W. OUYANG and G. W. YIP, J. Dent. Res. 83(11) (2004) 880CrossRefGoogle Scholar
  12. 12.
    Y.J. PARK, Y. M. LEE, J. Y. LEE, Y. J. SEOL, C. P. CHUNG and S. J. LEE, J. Control Release 67(2–3) (2000) 385CrossRefGoogle Scholar
  13. 13.
    D.S. KESKIN, A. TEZCANER, P. KORKUSUZ, F. KORKUSUZ and V. HASIRCI, Biomaterials 26(18) (2005) 4023CrossRefGoogle Scholar
  14. 14.
    A. SCABBIA, L. TROMBELLI, J. Clin. Periodontol. 31(5) (2004) 348CrossRefGoogle Scholar
  15. 15.
    C.M. SERRE, M. PAPILLARD, P. CHAVASSIEUX and G. BOIVIN, Biomaterials 14(2) (1993) 97CrossRefGoogle Scholar
  16. 16.
    A. REBAUDI, P. SILVESTRINI and P. TRISI, Int. J. Periodontics Restorative Dent. 23(4) (2003) 371Google Scholar
  17. 17.
    N. VOLPI, Biomaterials 20(15) (1999) 1359CrossRefGoogle Scholar
  18. 18.
    N. VOLPI, Biomaterials 23(14) (2002) 3015CrossRefGoogle Scholar
  19. 19.
    SG REES, D. T. HUGHES WASSELL, R.J. WADDINGTON and G. EMBERY, Biochim. Biophys. Acta. 1568(2) (2001) 118Google Scholar
  20. 20.
    G. GAFNI, D. SEPTIERAND and M. GOLDBERG, J. Cryst. Growth 205(4) (1999) 618CrossRefGoogle Scholar
  21. 21.
    M. P. GINEBRA, F. C. M. DRIESSENS and J. A. PLANELL, Biomaterials 25(17) (2004) 3453CrossRefGoogle Scholar
  22. 22.
    J. OUYANG, S. DENG and J. ZHOUNG, J. Cryst. Growth 270 (2004) 646CrossRefGoogle Scholar
  23. 23.
    C. C. CHEN and A. L. BOSKEY, Calcif. Tissue Int. 37(4) (1985) 395CrossRefGoogle Scholar
  24. 24.
    T. KOKUBO H. M. KIM and M. KAWASHITA, Biomaterials 24(13) (2003) 2161CrossRefGoogle Scholar
  25. 25.
    D. DELANEY and B. CONSTANTZ. pat (WO2004110316. (2004–12–23)Google Scholar
  26. 26.
    A.L. OLIVEIRA, P. B. MALAFAYA and R. L. Reis, Biomaterials 24(15) (2003) 2575CrossRefGoogle Scholar
  27. 27.
    A.E. PORTER, N. PATEL, J. N. SKEPPER, S. M. BEST and W. BONFIELD, Biomaterials 24(25) (2003) 4609CrossRefGoogle Scholar
  28. 28.
    G. BEREND and A. J. HEGEDÜS, Thermochim. Acta 11 (1975) 367CrossRefGoogle Scholar
  29. 29.
    C. RUEDA, C. ARIAS, P. GALERA, E. LOPEZ-CABARCOS and A. YAGÜE, Il Farmaco 56 (2001) 527CrossRefGoogle Scholar
  30. 30.
    M. MASUI, M. SUZUKI, Y. FUJISE and N. KANAYAMA, Biochim. Biophys. Acta 1546(2) (2001) 261Google Scholar
  31. 31.
    L. M. GROVER, J. C. KNOWLES, G. J. P. FLEMING and J. E. BARRALET, Biomaterials 24(23) (2003) 4133CrossRefGoogle Scholar
  32. 32.
    U. Gbureck, S. Dembski, R. Thull and J. E. Barralet, Biomaterials, 26(17) (2005) 3691CrossRefGoogle Scholar
  33. 33.
    M. BOHNER, F. THEISS, D. APELT, W. HIRSIGER, R. HOURIET, G. RIZZOLI, E. GNOS, C. FREI, J. A. AUER and B. VON RECHENBERG, Biomaterials 24(20) (2003) 3463CrossRefGoogle Scholar
  34. 34.
    M. H. PRADO DA SILVA, J. H. C. LIMA, G. A. SOARES, C. N. ELIAS, M. C. ANDRADE, S. M. BEST and I. R. GIBSON, Surf. Coatings Technol. 137(2–3) (2001) 270CrossRefGoogle Scholar
  35. 35.
    L. TORTET, J. R. GAVARRI, G. NIHOUL and A. J. DIANOUX, Solid State Ionics 97 (1997) 253CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • F. Tamimi-Mariño
    • 1
    • 2
  • J. Mastio
    • 1
  • C. Rueda
    • 1
  • L. Blanco
    • 2
  • E. López-Cabarcos
    • 1
  1. 1.Departamento de Física Química II, Facultad de FarmaciaUniversidad Complutense de MadridMadridSpain
  2. 2.Facultad de OdontologíaUniversidad Complutense de MadridMadridSpain

Personalised recommendations