Advertisement

Genotoxicity and cytotoxicity of glass ionomer cements on Chinese hamster ovary (CHO) cells

  • Daniel Araki RibeiroEmail author
  • Mariangela Esther Alencar Marques
  • Daisy Maria Favero Salvadori
Article

Abstract

Glass ionomer cements are widely used in dentistry as restorative materials and adhesives for composite restorations. However, the results of genotoxicity studies using these materials are inconclusive in literature. The goal of this study was to examine the genotoxic and cytotoxic potential of three different glass ionomer cements available commercially (Ketac Cem, Ketac Molar and Vitrebond) by the single cell gel (comet) assay and trypan blue exclusion test, respectively. For this, such materials were exposed to Chinese hamster ovary (CHO) cells in vitro for 1 h at 37C. Data were assessed by Kruskall-Wallis nonparametric test. The results showed that the powder from Ketac Molar displayed genotoxicity only in the maximum concentration evaluated (100 μg/mL). In the same way, the liquid from Vitrebond at 0.1% dilution caused an increase of DNA injury. Significant differences (P < 0.05) in cytotoxicity provoked by all powders tested of glass ionomer cements were observed for exposure at 1000 μg/mL concentration. With respect to liquids of glass ionomer cements evaluated, the major toxic effect on cell viability was produced at 10%, beginning at the dilution of 0.5% for Vitrebond. Taken together, we conclude that some components of glass ionomer cements show both genotoxic and cytotoxic effects.

Keywords

Polymer Cell Viability Toxic Effect Single Cell Maximum Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. D. WILSON and B. E. KENT, Br. Dent. J. 132 (1972) 133.CrossRefGoogle Scholar
  2. 2.
    J. HEIL, G. REIFFERSCHEID, P. WALDMANN, G. LEYHAUSEN and W. GEURTSEN, Mutat. Res. 368 (1996) 181.CrossRefGoogle Scholar
  3. 3.
    S. STEA, M. VISENTIN, M. CERVELLATI, E. VERRI, E. CENNI, L. SAVARINO, S. STEA and A. PIZZOFERRATO, J. Biomed. Mater. Res. 40 (1998) 545.CrossRefGoogle Scholar
  4. 4.
    P. B. MULLER, A. EISENTRAGER, W. JAHNEN-DECHENT and J. HOLLENDER, Biomaterials 24 (2003) 611.CrossRefGoogle Scholar
  5. 5.
    H. SCHWEIKL, G. SCHMALZ and B. BEY, Mater. Res. 28 (1994) 1061.CrossRefGoogle Scholar
  6. 6.
    H. SCHWEIKL, G. SCHMALZ and K. RACKEBRANDT, Mutat. Res. 415 (1998) 119.Google Scholar
  7. 7.
    A. AULETTA and J. ASHBY, Environ. Mol. Mutagen. 11 (1988) 135.Google Scholar
  8. 8.
    R. R. TICE, E. AGURELL, D. ANDERSON, B. BURLINSON, A. HARTMANN, H. KOBAYASHI, Y. MIYAMAE, E. ROJAS, J. C. RYU and Y. K. SASAKI, Environ. Mol. Mutagen. 35 (2000) 206.CrossRefGoogle Scholar
  9. 9.
    P. L. OLIVE, J. P. BANATH and R. E. DURAND, Radiat. Res. 112 (1990) 86.Google Scholar
  10. 10.
    D. A. RIBEIRO, M. E. A. MARQUES and D. M. F. SALVADORI, J. Endod. 30 (2004) 593.CrossRefGoogle Scholar
  11. 11.
    D. A. RIBEIRO, A. P. BAZO, C. A. S. FRANCHI, M. E. A. MARQUES and D. M. F. SALVADORI, J. Periodont. Res. 39 (2004) 358.CrossRefGoogle Scholar
  12. 12.
    D. A. RIBEIRO, C. SCOLASTICI, P. L. A. DE LIMA, M. E. A. MARQUES and D. M. F. SALVADORI, Surg. Oral. Med. Oral Pathol. Oral Radiol. Endod. 99 (2005) 637.CrossRefGoogle Scholar
  13. 13.
    V. J. MCKELVEY-MARTIN, M. H. L. GREEN, P. SCHMEZER, B. L. POOL-ZOBEL, M. P. DE MÉO and A. COLLINS, Mutat. Res. 288 (1993) 47.Google Scholar
  14. 14.
    A. HARTMANN, E. AGURELL, C. BEEVERS, S. BRENDLER-SCHWAAB, B. BURLINSON, P. CLAY, A. COLLINS, A. SMITH, G. SPEIT, V. THYBAUD and T. T. TICE, Mutagenesis 18 (2003) 45.CrossRefGoogle Scholar
  15. 15.
    N. P. SINGH, M. T. MCCOY, T. T. TICE and E. I. SCHNEIDER, Exp. Cell Res. 175 (1988) 184.CrossRefGoogle Scholar
  16. 16.
    W. GEURTSEN, Eur. J. Oral Sci. 106 (1998) 687.CrossRefGoogle Scholar
  17. 17.
    E. C. LONNROTH and J. E. DAHL, Acta Odontol. Scand 61 (2003) 52.Google Scholar
  18. 18.
    G. SCHMALZ and H. SCHWEIK, J. Mater. Sci. 1 (1990) 228.CrossRefGoogle Scholar
  19. 19.
    K. KEHE, F. X. REICHL, J. DURNER, U. WALTHER, R. HICKEL and W. FORTH, Biomaterials 22 (2001) 317.CrossRefGoogle Scholar
  20. 20.
    G. EISENBRAND, B. L. POOL-ZOBEL, M. BAKER, B. J. BALLS, A. R. BLAAUBOER, A. BOOBIS, S. CARERE, J. C. KEVEKORDES, R. LHUGUENOT, J. PIETERS and J. KLEINER, Food Chem. Toxicol 40 (2002) 193.CrossRefGoogle Scholar
  21. 21.
    D. A. RIBEIRO, P. C. M. PEREIRA, J. M. MACHADO, S. B. SILVA, A. W. PESSOA and D. M. SALVADORI, Mutat. Res. 559 (2004) 169.Google Scholar
  22. 22.
    A. HARTMANN and G. SPEIT, Toxicol. Lett. 90 (1997) 183.CrossRefGoogle Scholar
  23. 23.
    C. M. GEDIK, S. W. B. EWEN and A. R. COLLINS, Int. J. Radiat. Biol. 62 (1992) 313.Google Scholar
  24. 24.
    A. HARTMANN and G. SPEITA, Mutat. Res. 346 (1995) 49.CrossRefGoogle Scholar
  25. 25.
    Y. F. SAZAKI, S. KAWAGUCHI, A. KARMAYA, M. OHSHITA, K. KABASAWA, K. IWAMA, K. TANIGUCHI and S. TSUDA, Mutat. Res. 19 (2002) 103.Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • Daniel Araki Ribeiro
    • 1
    • 2
    Email author
  • Mariangela Esther Alencar Marques
    • 1
  • Daisy Maria Favero Salvadori
    • 1
  1. 1.Department of Pathology, Center for Genotoxins and Carcinogens EvaluationTOXICAN, Botucatu Medical School, UNESPSPBrazil
  2. 2.TOXICAN-Departamento de PatologiaFaculdade de Medicina de Botucatu-UNESPBotucatuBrazil

Personalised recommendations