Organic-inorganic interaction and the growth mechanism of hydroxyapatite crystals in gelatin matrices between 37 and 80 °C

  • Myung Chul Chang
  • William H. Douglas
  • Junzo Tanaka


The crystal development of hydroxyapatite[HAp] phase in gelatin[GEL] matrices was investigated in the temperature range 37 to 80 °C by using X-ray diffraction, scanning electron microscopy(SEM), thermoanalytical measurement(DT/TGA), Fourier-Transformed Infra-Red(FT-IR) spectroscopy, and transmission electron microscopy(TEM) with electron diffraction(ED). It was found that during the coprecipitation of apatite phase in GEL matrices and the next aging process the crystallites were formed and developed through the two reaction mechanisms of organic-inorganic interaction between apatite phase and GEL molecules, and thermodynamic reaction for the crystal growing. The analytical evidences showed that there was a definite competition between these two mechanisms with the reaction temperature. Below 50 °C the crystal development of HAp was greatly suppressed by the existence of the GEL molecules, indicating the heterogeneous nucleation by the supposed number of carboxyl groups in GEL. Above 50 °C the effective organic components as a template for the heterogeneous nucleation of apatite crystallites were greatly degraded and so more amount of inorganic ions could be favorably accredited on the preexisting crystallites in virtue of the limited nucleation chance, finally resulting in the crystal growth. At higher temperature pretty big HAp crystals were developed with the depletion of the organics to be bound with crystallites in the slurry solution. Presumably it is believed that the poisoning of the functional groups in GEL molecules was vigorously occurred in the phosphoric acid environment above ∼ 50 °C.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. A. YOUNG, Clinical Orthopedics 113 (1975) 249.Google Scholar
  2. 2.
    C. F. NAWROT and D. J. CAMPBELL, J. Dent. Res. 56(1977) 1017.Google Scholar
  3. 3.
    S. MANN and G. A. OZIN, Nature 365 (1996) 499.Google Scholar
  4. 4.
    S. MANN, D. D. ARCHIBALD, J. M. DIDYMUS, T. DOUGLAS, B. R. HEYWOOD, F. C. MELDUM and J. R. NICHOLAS, Nature 382 (1993) 313.Google Scholar
  5. 5.
    M. MUTHUKUMAR, C. K. OBER and E. L. THOMAS, Science 277 (1997) 1225.CrossRefGoogle Scholar
  6. 6.
    S. I. STUPP and P. V. BRAUN, Science 277 (1997) 1242.CrossRefGoogle Scholar
  7. 7.
    A. L. BOSKEY, Cacif. Tissue Int. 63 (1998) 179.Google Scholar
  8. 8.
    F. PETERS and M. EPPLE, J. Chem. Soc. Dalton Trans. (24) (2001) 3585.Google Scholar
  9. 9.
    M. IIJIMA, in “Monogr. Oral. Sci. Vol. 15, Octacalcium phosphate; Formation of octacalcium phosphate in vitro.” (Kager, Basel, 2001) p. 17–49.Google Scholar
  10. 10.
    S. BUSCH, H. DOLHAINE, A. DUCHESNE, S. HEINZ, O. HOCHREIN, F. LAERI, O. PODEBRAD, U. FIETZ, T. WEILAND and R. KNIEP, Eur. J. Inorg. Chem. 10(1999) 1643.Google Scholar
  11. 11.
    S. BUSCH, U. SCHWARTZ and R. KNIEP, Advanced Functional Materials 12 (203) 189.Google Scholar
  12. 12.
    M. KIKUCHI, Y. SUETSUGU, J. TANAKA, S. ITO, S. ICHINOSE, K. SHINOYAMA, Y. HIRAOKA, Y. MANDAI and S. NAKATANI, Bioceramics 12 (1999) 393.Google Scholar
  13. 13.
    M. C. CHANG, T. IKOMA, M. KIKUCHI and J. TANAKA, J. Mat. Sci. Lett. 20 (2001) 1129.Google Scholar
  14. 14.
    M. C. CHANG, T. IKOMA, M. KIKUCHI and J. TANAKA, J. Mat. Sci. Mat. Med. 13 (2002) 993.CrossRefGoogle Scholar
  15. 15.
    M. C. CHANG and J. TANAKA, Biomaterials 23 (2002) 3879.Google Scholar
  16. 16.
    M. C. CHANG and J. TANAKA, Biomaterials 23 (2002) 4811.Google Scholar
  17. 17.
    M. C. CHANG, C.-C. KO and W. H. DOUGLAS, Biomaterials 24 (2002) 2853.Google Scholar
  18. 18.
    M. C. CHANG, C.-C. KO and W. H. DOUGLAS, Biomaterials 24 (2002) 3087.Google Scholar
  19. 19.
    A. G. WORD and A. COURTS, in “The science and technology of gelatin” (Academic Press, London; 1977).Google Scholar
  20. 20.
    A. VEIS, in “The macromolecular chemistry of gelatin” (Academic Press, London; 1964).Google Scholar
  21. 21.
    R. Z. LEGEROS, in “Monogr. Oral. Sci. Vol. 15, Calcium Phosphates in Oral Biology and Medicine” (Kager, Basel, 1998) P.1.Google Scholar
  22. 22.
    E. P. PASCHALIS, E. DICARLO, E. BETTS, P. SHERMAN, R. MENDELSOHN and A. L. BOSKEY , Calcif. Tissue Int. 59 (1996) 480.Google Scholar
  23. 23.
    R. Z. LEGEROS, G. BONEL and R. LEGEROS, Calcif. Tiss. Res. 26 (1978) 111.CrossRefGoogle Scholar
  24. 24.
    D. G. A. NELSON and J. D. B. FEATHERSTONE, Calcif. Tissue Int. 34 (1982) 569.Google Scholar
  25. 25.
    H. E. FEKI, C. REY and M. VIGNOLES, Calcif. Tissue Int. 49 (1991) 269.Google Scholar
  26. 26.
    M. A. WALTERS, Y. C. LEUNG, N. C. BLMENTHAL, R.Z. LEGEROS and K.A. KONSKER, J. Inorgan. Biochem. 39 (1990) 193.Google Scholar
  27. 27.
    J. C. ELLIOTT, D. W. HOLCOMB and R. A. YOUNG, Calcif. Tissue Int. 37 (1985) 372.Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • Myung Chul Chang
    • 1
    • 3
    • 4
  • William H. Douglas
    • 4
  • Junzo Tanaka
    • 2
    • 3
  1. 1.School of Mat. Sci. and Chem. Eng.Kunsan National UniversityKunsanKorea
  2. 2.Biomaterials CenterNIMSIbarakiJapan
  3. 3.CRESTJapan Science and Technology corporationJapan
  4. 4.MDRCBB, Dept. of Oral Science, School of DentistryUniversity of Minnesota

Personalised recommendations