The effects of nanoscale pits on primary human osteoblast adhesion formation and cellular spreading

  • M. J. P. BiggsEmail author
  • R. G. Richards
  • N. Gadegaard
  • C. D. W. Wilkinson
  • M. J. Dalby


Current understanding of the mechanisms involved in ossesoinegration following implantation of a biomaterial has led to an emphasis being placed on the modification of material topography to control interface reactions. Recent studies have inferred nanoscale topography as an important mediator of cell adhesion and differentiation. Biomimetic strategies in orthopaedic research aim to exploit these influences to regulate cellular adhesion and subsequent bony tissue formation. Here experimental topographies of nanoscale pits demonstrating varying order have been fabricated by electron-beam lithography in (poly)carbonate. Osteoblast adhesion to these nanotopographies was ascertained by quantification of the relation between adhesion complex formation and total cell area. This study is specifically concerned with the effects these nanotopographies have on adhesion formation in S-phase osteoblasts as identified by BrdU incorporation. Nanopits were found to reduce cellular spreading and adhesion formation.


Adhesion Formation Injection Moulding Cellular Adhesion Cytoskeletal Organisation Adhesion Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. LIAO, A. S. ANDERSSON, D. SUTHERLAND, S. PETRONIS, B. KASEMO, and P. THOMSEN, Biomaterials 24 (2003) 649.CrossRefGoogle Scholar
  2. 2.
    G. CORDIOLI, Z. MAJZOUB, A. PIATTELLI and A. SCARANO, Int J. Oral. Maxillofac Implants 15 (2000) 668.Google Scholar
  3. 3.
    M. SUNDFELDT, L. V. CARLSSON, C. B. JOHANSSON, P. THOMSEN and C. GRETZER, Acta. Orthop. 77 (2006) 177.CrossRefGoogle Scholar
  4. 4.
    P. L. SANDERSON, W. RYAN, and P. G. TURNER, Injury 23 (1992) 29.CrossRefGoogle Scholar
  5. 5.
    R. D. OLESCHUK, M. E. MCCOMB, A. CHOW, W. ENS, K. G. STANDING, H. PERREAULT, Y. MAROIS and M. KING, Biomaterials 21 (2000) 1701.CrossRefGoogle Scholar
  6. 6.
  7. 7.
    E. ZAMIR and B. GEIGER, J. Cell. Sci. 114 (2001) 3583.Google Scholar
  8. 8.
    B. ZIMERMAN, T. VOLBERG, and B. GEIGER, Cell. Motil. Cytoskeleton 58 (2004) 143.CrossRefGoogle Scholar
  9. 9.
    M. J. DALBY, S. J. YARWOOD, M. O. RIEHLE, H. J. JOHNSTONE, S. AFFROSSMAN and A. S. CURTIS, Exp. Cell. Res. 276 (2002) 1.CrossRefGoogle Scholar
  10. 10.
    K. A. DIEHL, J. D. FOLEY, P. F. NEALEY and C. J. MURPHY, J. Biomed. Mater. Res. A (2005).Google Scholar
  11. 11.
    B. ZHU, Q. ZHANG, Q. LU, Y. XU, J. YIN, J. HU and Z. WANG, Biomaterials 25 (2004) 4215.CrossRefGoogle Scholar
  12. 12.
    M. J. DALBY, N. GADEGAARD, M. O. RIEHLE, C. D. WILKINSON and A. S. CURTIS, Int J. Biochem. Cell. Biol. 36 (2004) 2005.CrossRefGoogle Scholar
  13. 13.
    M. J. DALBY, S. CHILDS, M. O. RIEHLE, H. J. JOHNSTONE, S. AFFROSSMAN and A. S. CURTIS, Biomaterials 24 (2003) 927.CrossRefGoogle Scholar
  14. 14.
    S. J. CROSS, I. ap Gwynn, Cytobios 50 (1987) 41.Google Scholar
  15. 15.
    N. GADEGAARD, S. THOMS, D. S. MACINTYRE, K. MCGHEE, J. GALLAGHER, B. CASEY and C. D. W. WILKINSON, Microelectr. Eng. 67–68 (2003) 126.Google Scholar
  16. 16.
    N. GADEGAARD, M. MOSLER and M. B. LARSEN, Macromolecular Mater Eng. 288 (2003) 76.CrossRefGoogle Scholar
  17. 17.
    L. J. HEYDERMAN, H. SCHIFT, C. DAVID, J. GOBREACHT and T. SCHWEIZER, Microelectr. Eng. 54 (2000) 229.CrossRefGoogle Scholar
  18. 18.
    R. S. PRATHER, A. C. BOQUEST and B. N. DAY, Cloning 1 (1999) 17.CrossRefGoogle Scholar
  19. 19.
    V. GIRISH and A. VIJAYALAKSHMI, Indian. J. Cancer. 41 (2004) 47.Google Scholar
  20. 20.
    A. S. SANTIAGO, E. A. SANTOS, M. S. SADER, M. F. SANTIAGO and A. SOARES GDE, Pesqui Odontol Bras 19 (2005) 203.Google Scholar
  21. 21.
    M. MARCHISIO, M. DI CARMINE, R. PAGONE, A. PIATTELLI and S. MISCIA, J. Biomed. Mater. Res. B Appl. Biomater. 75 (2005) 251.Google Scholar
  22. 22.
    M. J. DALBY, M. O. RIEHLE, H. J. JOHNSTONE, S. AFFROSSMAN and A. S. CURTIS, J. Biomed. Mater. Res. A 67 (2003) 1025.CrossRefGoogle Scholar
  23. 23.
    O. L. BROWN, D. R. DIRSCHL and W. T. OBREMSKEY, J. Orthop. Trauma. 15 (2001) 271.CrossRefGoogle Scholar
  24. 24.
    K. ISLAMOGLU, O. K. COSKUNFIRAT, G. TETIK and H. E. OZGENTAS, Ann. Plast. Surg. 48 (2002) 265.CrossRefGoogle Scholar
  25. 25.
    M. H. BAUMS, B. A. ZELLE, W. SCHULTZ, T. ERNSTBERGER and H. M. KLINGER, Knee. Surg. Sports. Traumatol. Arthrosc. (2006).Google Scholar
  26. 26.
    E. R. JAGO and C. J. HINDLEY, Injury 29 (1998) 439.CrossRefGoogle Scholar
  27. 27.
    R. MCBEATH, D. M. PIRONE, C. M. NELSON, K. BHADRIRAJU and C. S. CHEN, Dev. Cell. 6 (2004) 483.CrossRefGoogle Scholar
  28. 28.
    J. O. GALLAGHER, K. F. MCGHEE, C. D. WILKINSON and M. O. RIEHLE, IEEE Trans. Nanobioscience 1 (2002) 24.CrossRefGoogle Scholar
  29. 29.
    D. O. MEREDITH, G. R. OWEN, I. AP GWYNN and R. G. RICHARDS, Exp. Cell. Res. 293 (2004) 58.CrossRefGoogle Scholar
  30. 30.
    M. J. DALBY, M. O. RIEHLE, H. JOHNSTONE, S. AFFROSSMAN and A. S. CURTIS, Cell. Biol. Int. 28 (2004) 229.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • M. J. P. Biggs
    • 1
    • 2
    Email author
  • R. G. Richards
    • 2
  • N. Gadegaard
    • 1
  • C. D. W. Wilkinson
    • 1
  • M. J. Dalby
    • 1
  1. 1.Centre for Cell EngineeringInstitute of Biomedical and Life Sciences, Joseph Black Building, University of GlasgowGlasgowUK
  2. 2.AO Research InstituteAO FoundationDavos PlatzSwitzerland

Personalised recommendations