Controlling the processing of collagen-hydroxyapatite scaffolds for bone tissue engineering

  • Denys A. Wahl
  • Eleftherios Sachlos
  • Chaozong Liu
  • Jan T. Czernuszka
Article

Abstract

Scaffolds are an important aspect of the tissue engineering approach to tissue regeneration. This study shows that it is possible to manufacture scaffolds from type I collagen with or without hydroxyapatite (HA) by critical point drying. The mean pore sizes of the scaffolds can be altered from 44 to 135 μm depending on the precise processing conditions. Such pore sizes span the range that is likely to be required for specific cells. The mechanical properties of the scaffolds have been measured and behave as expected of foam structures. The degradation rate of the scaffolds by collagenase is independent of pore size. Dehydrothermal treatment (DHT), a common method of physically crosslinking collagen, was found to denature the collagen at a temperature of 120C resulting in a decrease in the scaffold’s resistance to collagenase. Hybrid scaffold structures have also been manufactured, which have the potential to be used in the generation of multi-tissue interfaces. Microchannels are neatly incorporated via an indirect solid freeform fabrication (SFF) process, which could aid in reducing the different constraints commonly observed with other scaffolds.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. CORTESINI, Transpl. Immunol. 15 (2005) 81.CrossRefGoogle Scholar
  2. 2.
    F. R. ROSE and R. O. C. OREFFO, Biochem. Biophys. Res. Commun. 292 (2002) 1.CrossRefGoogle Scholar
  3. 3.
    S. DEDHAR et al., J. Cell Biol. 104 (1987) 585.CrossRefGoogle Scholar
  4. 4.
    W. D. STAATZ et al., J. Biol. Chem. 266 (1991) 7363.Google Scholar
  5. 5.
    G. T. CRAIG et al., Biomaterials 10 (1989) 133.CrossRefGoogle Scholar
  6. 6.
    E. LANDI et al., J. Eur. Ceram. Soc. 23 (2003) 2931.CrossRefGoogle Scholar
  7. 7.
    A. L. BOSKEY, Calcif. Tissue Int. 63 (1998) 179.CrossRefGoogle Scholar
  8. 8.
    D. A. WAHL and J. CZERNUSZKA, Eur. Cell. Mater. J. 11 (2006) 43.Google Scholar
  9. 9.
    V. KARAGEORGIOU and D. KAPLAN, Biomaterials 26 (2005) 5474.CrossRefGoogle Scholar
  10. 10.
    M. NOMI et al., Mol. Aspects Med. 23 (2002) 463.Google Scholar
  11. 11.
    E. TSURUGA et al., J. Biochem. 121 (1997) 317.Google Scholar
  12. 12.
    F. J. O’BRIEN et al., Biomaterials 26 (2005) 433.CrossRefGoogle Scholar
  13. 13.
    E. SACHLOS and J. CZERNUSZKA, Eur. Cell. Mater. J. 5 (2003) 29.Google Scholar
  14. 14.
    M. LEE et al., Biomaterials 26 (2005) 4281.CrossRefGoogle Scholar
  15. 15.
    H. S. TUAN and D. W. HUTMACHER, Comput. Aided Des. 37 (2005) 1151.CrossRefGoogle Scholar
  16. 16.
    S. J. HOLLISTER et al., Biomaterials 23 (2002) 4095.CrossRefGoogle Scholar
  17. 17.
    B. LEUKERS et al., J. Mater. Sci. Mater. Med. 16 (2005) 1121.CrossRefGoogle Scholar
  18. 18.
    I. MARTIN et al., J. Biomech. In Press (2006).Google Scholar
  19. 19.
    E. SACHLOS et al., Biomaterials 24 (2003) 1487.CrossRefGoogle Scholar
  20. 20.
    E. SACHLOS et al., Mater. Res. Soc. Symp. Proc. 758 (2003) 187.Google Scholar
  21. 21.
    K. WEADOCK et al., Biomater. Med. Devices Artif. Organs 11 (1983) 293.Google Scholar
  22. 22.
    Y. TAKAHASHI and Y. TABATA, J. Biomater. Sci. Polym. Ed. 15 (2004) 41.CrossRefGoogle Scholar
  23. 23.
    K. TUZLAKOGLU et al., J. Mater. Sci. Mater. Med. 16 (2005) 1099.CrossRefGoogle Scholar
  24. 24.
    M. ITOH et al., Biomaterials 25 (2004) 2577.CrossRefGoogle Scholar
  25. 25.
    F. R. ROSE et al., Biomaterials 25 (2004) 5507.CrossRefGoogle Scholar
  26. 26.
    I. V. YANNAS, J. Macromol. Sci. Rev. Macromol. Chem. Phys. C 7 (1972) 49.Google Scholar
  27. 27.
    I. REHMAN and W. BONFIELD, J. Mater. Sci. Mater. Med. 8 (1997) 1.CrossRefGoogle Scholar
  28. 28.
    G. C. KOUMOULIDIS et al., J. Coll. Interf. Sci. 259 (2003) 254.CrossRefGoogle Scholar
  29. 29.
    A. KOCIALKOWSKI et al., Injury 21 (1990) 142.CrossRefGoogle Scholar
  30. 30.
    B. D. BOYAN et al., Biomaterials 17 (1996) 137.CrossRefGoogle Scholar
  31. 31.
    U. MEYER et al., Eur. Cell. Mater. J. 9 (2005) 39.Google Scholar
  32. 32.
    E. SACHLOS, D Phil thesis, Oxford University (2004) 77.Google Scholar
  33. 33.
    M. F. ASHBY and D. R. H. JONES, in “Engineering Materials 2: An Introduction to Microstructures, Processing and Design” (Pergamon Press, 1986) p. 250.Google Scholar
  34. 34.
    H. SCHOOF et al., J. Crystal Growth 209 (2000) 122.CrossRefGoogle Scholar
  35. 35.
    I. V. YANNAS and A. V. TOBOLSKY, Nature 215 (1967) 509.CrossRefGoogle Scholar
  36. 36.
    P. ANGELE et al., Biomaterials 25 (2004) 2831.CrossRefGoogle Scholar
  37. 37.
    W. BONFIELD, et al., Acta Materialia 46 (1998) 2509.CrossRefGoogle Scholar
  38. 38.
    W. E. HENNINK and C. F. VAN NOSTRUM, Adv. Drug. Deliv. Rev. 54 (2002) 13.CrossRefGoogle Scholar
  39. 39.
    K. S. WEADOCK et al., J. Biomed. Mater. Res. 32 (1996) 221.CrossRefGoogle Scholar
  40. 40.
    M. GEIGER, PhD thesis, Friedrich-Alexander-Universität Erlangen (2001) 84.Google Scholar
  41. 41.
    S. D. GORHAM, et al., Int. J. Biol. Macromol. 14 (1992) 129.CrossRefGoogle Scholar
  42. 42.
    M.-C. WANG, et al., Biomaterials 15 (1994) 507.CrossRefGoogle Scholar
  43. 43.
    A. BIGI et al., Biomaterials 25 (2004) 5675.CrossRefGoogle Scholar
  44. 44.
    T. J. WESS and J. P. ORGEL, Thermochimica Acta 365 (2000) 119.CrossRefGoogle Scholar
  45. 45.
    P. J. KELLY, J. Bone Joint Surg. Am. 50 (1968) 766.Google Scholar
  46. 46.
    M. ARTICO et al., Surg. Neurol. 60 (2003) 71.CrossRefGoogle Scholar
  47. 47.
    R. R. BETZ, Orthopedics 25 (2002) S561.Google Scholar
  48. 48.
    D. SCHAEFER et al., Arthritis Rheum. 46 (2002) 2524.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • Denys A. Wahl
    • 1
  • Eleftherios Sachlos
    • 1
  • Chaozong Liu
    • 1
  • Jan T. Czernuszka
    • 1
  1. 1.Department of MaterialsUniversity of OxfordOxfordUK

Personalised recommendations