Advertisement

Journal of Materials Science: Materials in Medicine

, Volume 17, Issue 12, pp 1357–1364 | Cite as

Macroporous hydrogels based on 2-hydroxyethyl methacrylate. Part 5: Hydrolytically degradable materials

  • Martin PřádnýEmail author
  • Jiří Michálek
  • Petr Lesný
  • Aleš Hejčl
  • Jiří Vacík
  • Miroslav Šlouf
  • Eva Syková
Article

Abstract

Macroporous hydrogels based on 2-hydroxyethyl methacrylate, 2-ethoxyethyl methacrylate and N-(2-hydroxypropyl)methacrylamide, methacrylic acid and [2-(methacryloyloxy)ethyl]trimethylammonium chloride crosslinked with N,O-dimethacryloylhydroxylamine were prepared. Hydrogels were degraded in a buffer of pH 7.4. Completely water-soluble polymers were obtained over time periods ranging from 2 to 40 days. The process of degradation was followed gravimetrically and by optical and electron microscopy. In vivo biological tests with hydrogels based on copolymers of 2-ethoxyethyl methacrylate/N-(2-hydroxypropyl)methacrylamide were performed.

Keywords

HEMA Methacrylic Acid HPMA Methacrylamide Trimethylammonium Chloride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. H. SILVER and R. W. JOHNSON, “Biomaterials, Medical Devices and Tissue ngineering: An Integrated Approach” (Chapman & Hall, London, 1994).Google Scholar
  2. 2.
    M. SEFTON, New Biomaterials, The 7th New Jersey Symposium on Biomaterials Science, New Brunswick (2004).Google Scholar
  3. 3.
    N. EFRON, “The International Contact Lens Year Book” (W.B. Saunders Company Ltd., 1993).Google Scholar
  4. 4.
    N. EFRON, “Contact Lens Practice” (Butterworth-Heinemann, New Delhi, 2002), p. 76.Google Scholar
  5. 5.
    R. G. MARTIN, J. P. GILLS and D. R. SANDERS, “Foldable Intraocular Lenses” (Slack Inc., NJ, USA, 1993), Section II and III.Google Scholar
  6. 6.
    M. ZIGNANI, S. F. BERNATCHEZ and T. Le MINH, J. Biomed. Mater. Res. 39 (1998) 277.CrossRefGoogle Scholar
  7. 7.
    V. OLIVER, N. FAUCHEUX and P. HARDOUIN, Drug Discovery Today 9 (2004) 803.CrossRefGoogle Scholar
  8. 8.
    T. E. J. IND, J. C. SHELTON and J. H. SHEPHERD, Br. J. Obstetrics Gynaecol. 108 (2001) 1013.CrossRefGoogle Scholar
  9. 9.
    L. ŠEFC, M. PŘÁDNÝ, J. VACÍK, J. MICHÁLEK, C. POVÝŠIL, I. VÍTKOVÁ, M. HALAŠKA and V. ŠIMON, Biomaterials 23 (2002) 3711.CrossRefGoogle Scholar
  10. 10.
    P. LESNÝ, J. D. CROOS, M. PŘÁDNÝ, J. VACÍK, J. MICHÁLEK, S. WOERLY and E. SYKOVÁ, J. Chem. Neuroanat. 23 (2002) 243.CrossRefGoogle Scholar
  11. 11.
    K. SMETANA, B. DVOŘÁNKOVÁ, M. JELÍNKOVÁ, J. MICHÁLEK and J. VACÍK, J. Mater. Sci.: Mater. Med. 8 (1997) 587.CrossRefGoogle Scholar
  12. 12.
    B. DVOŘÁNKOVÁ, Z. HOLÍKOVÁ, J. VACÍK, R. KǓNIGOVÁ, Z. KAPOUNKOVÁ, J. MICHÁLEK, M. PŘÁDNÝ and K. SMETANA, Int. J. Dermatol. 42 (2003) 219–223.CrossRefGoogle Scholar
  13. 13.
    J. S. AHN, H. K. CHOI and M. K. CHUN, Biomaterials 23 (2002) 1411.CrossRefGoogle Scholar
  14. 14.
    K. ULBRICH, M. PECHAR, T. ETRYCH, M. JELÍNKOVÁ, M. KOVÁŘ and B. ŘÍHOVÁ, Mater. Struct. 10 (2003) 3.Google Scholar
  15. 15.
    K. Y. CHEN, J. F. KUO and C. Y. CHEN, Biomaterials 21 (2000) 161.CrossRefGoogle Scholar
  16. 16.
    N. A. PEPPAS, “Hydrogels in Medicine and Pharmacy” (CRC Press, Boca Raton, 1986).Google Scholar
  17. 17.
    S. A. BERGER, W. GOLDSMITH and E. R. LEWIS, “Introduction to Bioengineering” (Oxford University Press, 1996).Google Scholar
  18. 18.
    S. W. KIM, Polym. Mater. Sci. Eng. 89 (2003) 178.Google Scholar
  19. 19.
    V. ŠKARDA and F. RYPÁČEK, J. Bioact. Compat. Polym. 12 (1997) 186.Google Scholar
  20. 20.
    S. WOERLY, D. DOAN, N. SOSA, J. VELLIS and A. ESPINOSA, Int. J. Dev. Neurosc. 19 (2001) 63.CrossRefGoogle Scholar
  21. 21.
    H. DRNOVSKÁ, M. ŠLOUF and F. RYPÁČEK, “in Proceedings of the 40th IUPAC International Symposium on Macromolecules” (World Polymer Congress, Paris, 2004), p. 108.Google Scholar
  22. 22.
    M. PŘÁDNÝ, P. LESNÝ, J. FIALA, J. VACÍK, M. ŠLOUF, J. MICHÁLEK and E. SYKOVÁ, Collect. Czech. Chem. Commun. 68 (2003) 812.CrossRefGoogle Scholar
  23. 23.
    M. PŘÁDNÝ, P. LESNÝ, K. SMETANA Jr., J. VACÍK, M. ŠLOUF, J. MICHÁLEK and E. SYKOVÁ, J. Mater. Sci.: Mater. Med. 16 (2005) 767.CrossRefGoogle Scholar
  24. 24.
    J. MICHÁ LEK, M. PŘÁ DNÝ, A. ARTYUKHOV, M. Š LOUF, J. VACÍ K, K. SMETANA Jr., J. Mater. Sci.: Mater. Med. 16 (2005) 783.CrossRefGoogle Scholar
  25. 25.
    K. ULBRICH, V. ŠUBR, P. PODPĚROVÁ and M. BUREŠOVÁ, J. Controlled Release 34 (1995) 155.CrossRefGoogle Scholar
  26. 26.
    D. HORÁK and O. CHAIKIVSKYY, J. Polym. Sci., Part A: Polym. Chem. 40 (2002) 1625.CrossRefGoogle Scholar
  27. 27.
    K. ULBRICH, V. ŠUBR, L. W. SEYMOUR and R. DUNCAN, J. Controlled Release 24 (1993) 181.CrossRefGoogle Scholar
  28. 28.
    J. STROHALM and J. KOPEČEK, Angew. Makromol. Chem. 70 (1978) 109.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • Martin Přádný
    • 1
    Email author
  • Jiří Michálek
    • 1
    • 2
  • Petr Lesný
    • 2
    • 3
  • Aleš Hejčl
    • 2
    • 3
  • Jiří Vacík
    • 1
    • 2
  • Miroslav Šlouf
    • 1
  • Eva Syková
    • 2
    • 3
  1. 1.Academy of Sciences of the Czech Republic, Institute of Macromolecular ChemistryPrague 6Czech Republic
  2. 2.Center for Cell Therapy and Tissue RepairCharles UniversityPrague 5Czech Republic
  3. 3.Institute of Experimental Medicine, Academy of Sciences of the Czech RepublicPrague 4Czech Republic

Personalised recommendations