Journal of Materials Science: Materials in Medicine

, Volume 17, Issue 11, pp 1101–1111

Surface morphology and adsorbed proteins affect phagocyte responses to nano-porous alumina

  • M. Karlsson
  • L. Tang
Article

Abstract

This study evaluates human neutrophil responses to aluminum oxide membranes with different pore sizes (20 nm and 200 nm in diameter) uncoated and pre-coated with serum, collagen I, or fibrinogen. The effect of released neutrophil granule components on the survival of osteoblastic cells (MG63) bound to the alumina membranes has also been evaluated. Without protein coatings the 20 nm pore-size membranes prompt higher reactive oxygen species (ROS) production as assessed by luminol-amplified chemiluminescence than the 200 nm pore-size membranes. Such pore-size depending responses were also found on membranes pre-coated with fibrinogen, but not with collagen or serum were in fact a much lower ROS production was observed. In addition, uncoated and fibrinogen-coated membranes prompt stronger release of the granule enzymes, myeloperoxidase and elastase, than collagen or serum-coated alumina. Equally important, we found that surface-mediated phagocyte activation and the subsequent release of granule components had a significant affect on the adhesion, viability and proliferation of osteoblasts. This stresses the importance of studying not only cell/surface interactions but also cell/cell interactions in wound healing and tissue regeneration processes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. H. WOOLEY, S. NASSER and R. H. FITZGERALD JR., The immune response to implant materials in humans. Clin. Orthop. 326 (1996) 63–70.CrossRefGoogle Scholar
  2. 2.
    A. R. WALPOLE, E. P. BRIGGS, M. KARLSSON, E. PÅLSGÅRD and P. R. WILSHAW, Nano-porous alumina coatings for improved bone implant surfaces. Mat.-wiss. u. Werkstofftech 12(34) (2003) 1064–1068.CrossRefGoogle Scholar
  3. 3.
    E. P. BRIGGS, M. KARLSSON, A. R. WALPOLE, E. PÅLSGÅRD and P. R. WILSHAW, Formation of highly adherent nano porous alumina on Ti based substrates (a novel bone implant coating). J. Mater. Sci. Mater. Med. 15 (2004) 1021–1029.CrossRefGoogle Scholar
  4. 4.
    M. KARLSSON, E. PÅLSGÅRD, P. R. WILSHAW and L. DI SILVIO, Initial in vitro interaction of osteoblasts with nano-porous alumina. Biomaterials 24 (2003) 3039–3046.CrossRefGoogle Scholar
  5. 5.
    L. P. TANG and J. W. EATON, Nature responses to unnature materials: A molecular mechanism for foreign body reactions. Molecular Medicine 5(6) (1999) 351–358.Google Scholar
  6. 6.
    L. TANG and J. W. EATON, Inflammatory responses to biomaterials. Am. J. Clin. Path. 103 (1995) 466–471.Google Scholar
  7. 7.
    H. NYGREN, M. BROBERG, C. ERIKSSON, H. SAHLIN and N. YAHYAPOUR, The respiratory burst response of surface-adhering leukocytes. A key to tissue engineering. Colloids and Surfaces B: Biointerfaces 22 (2001) 87–97.CrossRefGoogle Scholar
  8. 8.
    J. M. ANDERSON, Mechanism of inflammation and infection with implanted devices. Cardiovasc Pathol. 2 (1993) 33S–41S.CrossRefGoogle Scholar
  9. 9.
    L. TANG and J. W. EATON, Mechanism of acute inflammatory responses to biomaterials. Cells Mater. 4 (1994) 429–36.Google Scholar
  10. 10.
    L. TANG, Molecular mechanism of biomaterial-mediated phagocyte responses. in “Biomaterial Engineering and Devices: Human Applications, Fundamental and Vascular and Carrier Applications”, edited by D. L. Wise, J. D. Gresser, D. J. Trantolo, M. V. Cattaneo, K.-U. Lewandrowski, and M. L. Yaszemsky (The Humana Press: Totowa, NJ, 2000) p. 3–14.Google Scholar
  11. 11.
    M. KARLSSON, A. JOHANSSON, L. TANG and M. BOMAN, Nanoporous aluminium oxide affects neutrophil bahaviour. Microscopy Res. Tech. 63(5) (2004) 259–265.CrossRefGoogle Scholar
  12. 12.
    G. A. DUNN, Contact guidance of cultured tissue cells: a survey of potentially relevant properties of the substratum. in “Cell behaviour” edited by R. Bellairs, A. Curtis and G. Dunn (Cambridge university press, London, 1982) p. 247–281.Google Scholar
  13. 13.
    T. A. DESAI, Micro- and nanoscale structures for tissue engineering constructs. Med. Eng. Phys. 22 (2000) 595–606.CrossRefGoogle Scholar
  14. 14.
    J. TAN, H. SHEN, K. L. CARTER and W. M. SALTZMAN, Controlling human polymorphonuclear leukocytes motility using microfabrication technology. J. Biomed. Mater. Res. 51 (2000) 694–702.CrossRefGoogle Scholar
  15. 15.
    R. G. FLEMMING, C. J. MURPHY, G. A. ABRAMS, S. L. GOODMAN and P. F. NEALEY, Effects of synthetic micro- and nano-structured surfaces on cell behaviour. Biomaterials 20 (1999) 573–588.CrossRefGoogle Scholar
  16. 16.
    A. CURTIS and C. WILKINSON, Topographical control of cells. Biomaterials 18 (1998) 1573–1583.CrossRefGoogle Scholar
  17. 17.
    P. CLARK, P. CONNOLLY, A. S. G. CURTIS, J. A. T. DOW and C. D. W. WILKINSON, Topographical control of cell behaviour, I. Simple step cues. Development 99 (1987) 439–448.Google Scholar
  18. 18.
    J. M. COURTNEY, N. M. K. LAMBA, S. SUNDARAM and C. D. FORBES, Biomaterials for blood-contacting applications. Biomaterials 15(10) (1994) 737–744.CrossRefGoogle Scholar
  19. 19.
    J. M. LACKIE, Aspect of the behaviour of neutrophil leucocytes, in “Cell Behaviour” edited by R. Bellairs, A. Curtis, G. Dunn (Cambride university press, Cambridge, 1982) p. 319–348.Google Scholar
  20. 20.
    N. C. LINDFORS and M. KLOCKARS, Immunoglobuline enhances the bioactive-glass-induced chemiluminesence response of human polymorphonuclear leukocytes. J. Biomed. Mater. Res. 55 (2001) 613–617.CrossRefGoogle Scholar
  21. 21.
    L. TANG and J. W. EATON, Fibrin(ogen) mediates acute inflammatory responses to biomaterials. J. Exp. Med. 178 (1993) 2147–2156.CrossRefGoogle Scholar
  22. 22.
    L. HÅKANSSON and P. VENGE, The influence of serum on random migration and chemotaxis of polymorphonuclear leucocytes: Methological evaluation using sera from infection-prone patients and normals. Scandinavian J. Immunol. 11 (1980) 271–282.CrossRefGoogle Scholar
  23. 23.
    C. DAHLGREN, P. FOLLIN, A. JOHANSSON, R. LOCK, H. LUNDQVIST and Å. WALAN, Chemiluminescence as means of following the function of phagocytic cells. in “Trends in photochemistry and photobiology” edited by A. Kumar (Research trends, 1991) p. 427–443.Google Scholar
  24. 24.
    G. D. VIRCA, G. METZ and H. P. SCHNEBLI, Similarities between human and rat leukocyte elastase and cathepsin G. Eur. J. Biochem. 144 (1984) 1–9.CrossRefGoogle Scholar
  25. 25.
    G. R. NAKAYAMA, M. C. CATON, M. P. NOVA and Z. PARANDOOSH, Assessment of the alamar blue assay for cellular growth and viability in vitro. J. Imm. Meth. 204 (1997) 205–208.CrossRefGoogle Scholar
  26. 26.
    R. E. MARCHANT, Cell adhesion and interaction with biomaterials. J. Adhesion. 20 (1986) 211–225.Google Scholar
  27. 27.
    P. M. HENSON, Mechanism of exocytosis in phagocytic inflammatory cells. in Annual meeting of the american association of pathologists (FASEB). (Anahein, California, 1980).Google Scholar
  28. 28.
    I. V. YANNAS, Natural materials. in “Biomaterials Science: An Introduction to Materials in Medicine” edited by B. D. Ratner, A. S. Hoffman, F. J. Schoen and J. E. Lemons (Academic Press, San Diego, 1996) p. 84–92.Google Scholar
  29. 29.
    L. TANG and J. W. EATON, Molecular determinants of aucte inflammatory responses to biomaterials. in “Tissue engineering of prosthetic vascular grafts” edited by P. P. Zilla and H. P. Greisler (RG Landes Company, 1999) p. 207–218.Google Scholar
  30. 30.
    Y. TAKAMI, S. YAMANE, K. MAKINOUCHI, G. OTSUKA, J. GLUECK, R. BENKOWSKI and Y. NOSE, Protein adsorption onto ceramic surfaces. J. Biomed. Mater. Res. 40 (1998) 24–30.CrossRefGoogle Scholar
  31. 31.
    S. J. WHICHER and J. L. BRASH, Platelet-foreign surface interactions: Release of granule constituents from adherent platelets. J. Biomed. Mater. Res. 12 (1978) 181–201.CrossRefGoogle Scholar
  32. 32.
    C. R. JENNEY and J. M. ANDERSON, Adsorbed serum proteins responsible for surface dependent human macrophage behaviour. J. Biomed. Mater. Res. 49 (2000) 435–447.CrossRefGoogle Scholar
  33. 33.
    C. LENTNER, Blood-Plasma proteins. in “Geigy Scentific Tables 3” edited by C. Lentner (CIBA-GEIGY, Basle, 1984) p. 140–141.Google Scholar
  34. 34.
    E. DECLEVA, P. DRI, R. MENEGAZZI, S. BUSETTO and R. CRAMER, Evidence that TNF-induced respiratory burst of adherent PMN is mediated by integrin alpha(L)beta(2). J. Leukoc. Biol. 72(4) (2002) 718–26.Google Scholar
  35. 35.
    J. C. MONBOISSE, R. GARNOTEL, A. RANDOUX, J. DUFER and J. BOREL, Adhesion of human neeutrophils to and activation by type I collagen involving a β2 integrin. J. Leukoc. Biol. 50 (1991) 373–380.Google Scholar
  36. 36.
    M. BERGKVIST, J. CARLSSON and S. OSCARSSON, Surface dependent conformations of human plasma fibronectin adsorbed to silica, mica and hydrophobic surfaces, studied with Atomic Force Microscopy. J. Biomed. Mater. Res. 64A (2003) 349–356.CrossRefGoogle Scholar
  37. 37.
    J. C. MONBOISSE, G. BELLON, A. RANDOUX, J. DUFER and J. BOREL, Activation of human neutrophils by type I collagen. Biochem. J. 270 (1990) 459–462.Google Scholar
  38. 38.
    J. C. MONBOISSE, G. BELLON, J. DUFER, A. RANDOUX and J. BOREL, Collagen activates superoxide anion production by human polymorphonuclear neutrophils. Biochem. J. 246 (1987) 599–603.Google Scholar
  39. 39.
    J. TRAVIS, J. POTEMPA, N. BANGALORE and A. KURDOWSKA, Multiple functions of neutrophil proteases and their inhibitor complexes. in “Current topics in rehabilitation: Biochemistry of pulmonary emphysema” edited by Grassi et al. (Springer verlag, London, 1992) p. 71–79.Google Scholar
  40. 40.
    J. TRAVIS, Structure, function and control of neutrophil proteinases. Am. J. Med. 84 (1988) 37–42.Google Scholar
  41. 41.
    P. M. HENSON, The immunologic release of constituents from neutrophil leukocytes, Mechanism of release during phagocytosis, and adherence to nonphagocytosable materials. J. Immunol. (1971) 1547–1557.Google Scholar
  42. 42.
    A. M. MOURSI, C. H. DAMSKY, J. LULL, D. ZIMMERMAN, S. B. DOTY, S. AOTA and R. K. GLOBUS, Fibronectin regulates calvarial osteoblast differentiation. J. Cell. Sci. 109 (1996) 1369–1380.Google Scholar
  43. 43.
    A. M. MOURSI, R. K. GLOBUS and C. H. DAMSKY, Interactions between integrin receptors and fibronectin are required for calvarial osteoblast differentiation in vitro. J. Cell. Sci. 110 (1997) 2187–2196.Google Scholar
  44. 44.
    R. K. GLOBUS, S. B. DOTY, J. LULL, E. HOLMUHAMEDOV, M. J. HUMPHRIES and C. H. DAMSKY, Fibronectin is a survival factor for differentiated osteoblasts. J. Cell. Sci. 111 (1998) 1385–1393.Google Scholar
  45. 45.
    A. G. ANDRIANARIVO, J. A. ROBINSON, K. G. MANN and R. P. TRACY, Growth on type I collagen promotes expression of the osteoblastic phenotype in human osteosarcoma MG-63 Cells. J. Cell. Phys. 153 (1992) 256–265.CrossRefGoogle Scholar
  46. 46.
    L. MASI, A. FRANCHI, M. SANTUCCI, D. DANIELLI, L. ARGANINI, V. GIANNONE, L. FORMIGLI, S. BENVENUTI, A. TANINI, F. BEGHE, M. MIAN and M. L. BRANDI, Adhesion growth and matrix production by osteoblasts on collagen substrata. Calcified Tissue Int. 51 (1992) 202–212.CrossRefGoogle Scholar
  47. 47.
    D. ROOS and C. C. WINTERBOURN, Lethal weapons. Science 296 (2002) 669–671.CrossRefGoogle Scholar
  48. 48.
    B. FARTASH, M. HULTIN, A. GUSTAFSSON, B. ÅSMAN and K. ARVIDSON, Markers of inflammation in crevicular fluid from peri-implant mucosa surrounding single crystal sapphire implants. Clin. Oral. Impl. Res. 8 (1997) 32–38.Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • M. Karlsson
    • 1
  • L. Tang
    • 2
  1. 1.Department of Surface Biotechnology, BMCUppsalaSweden
  2. 2.Biomedical Engineering ProgramUniversity of Texas at ArlingtonArlingtonUSA

Personalised recommendations